soil mechanics
Dotaz
Zobrazit nápovědu
The evolution of species is governed by complex phenomena in which biological and environmental features may interact dynamically. Subterranean mammals dig tunnels whose diameter minimizes energetic costs during excavations and display anatomical adaptations in order to burrow structurally stable tunnels according to specific features of the soil. These animals weight from less than 50 g up to 1-2 kg, and dig tunnels with diameters from 3 to 15 cm. The use of allometric laws has enabled these data to be correlated. However, since tunnels need to be stable with respect to the geomechanical characteristics of the resident soils, a mathematical treatment linking the admissible dimensions of tunnels to the environment here suggests a mechanically grounded correlation between the body mass of subterranean mammals and the maximum dimensions of tunnels. Remarkably, such theoretical findings reflect very well the empirical allometric relationship and contribute to explain the wide differences observed in body sizes of subterranean mammals. In this respect, a far from ancillary role of environmental mechanics on the morphological evolution of subterranean mammals can be hypothesized.
- MeSH
- aklimatizace MeSH
- půda * MeSH
- savci * MeSH
- tělesná hmotnost MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plant-soil feedback (PSF) is a fundamental mechanism explaining plant community composition. Two-phase experiments, i.e., conditioning and feedback, represent a common methodology to study PSF. The duration of the conditioning phase varies among studies and the PSF observed is often explained by its biotic component. Little is known about the temporal variation of PSF and its abiotic component. As early life stages are crucial for plant establishment, we grew Rorippa austriaca in soil conditioned over 2, 4, 6 or 8 weeks by a conspecific or a co-occurring species, Agrostis capillaris. For each conditioning duration, we analysed the soil chemical properties and the direction and intensity of intra- or inter-specific feedbacks. With increasing duration, the negative intra- and inter-specific feedbacks became stronger and weaker, respectively. The inter-specific feedback was more negative than the intra-specific feedback at 2 weeks and this reversed thereafter. The Mg content decreased with conditioning duration whatever the conditioning species was. With increasing duration, conditioning by R. austriaca strongly decreased pH, while A. capillaris did not affect pH. The K and P contents were not affected by the conditioning duration and were higher in R. austriaca soil than in A. capillaris soil. Our results suggest that not only conditioning species but also duration of conditioning phase may affect the magnitude of PSF. The changes in soil chemical properties linked to the conditioning species or the conditioning phase duration may drive the feedbacks by affecting plant growth directly or via the interacting microbial communities.
- MeSH
- půda * MeSH
- půdní mikrobiologie MeSH
- rostliny * MeSH
- vývoj rostlin MeSH
- zpětná vazba MeSH
- Publikační typ
- časopisecké články MeSH
Soil biota contribute to diverse soil ecosystem services such as greenhouse gas mitigation, carbon sequestration, pollutant degradation, plant disease suppression and nutrient acquisition for plant growth. Here, we provide detailed insight into different perturbation approaches to disentangle soil microbiome functions and to reveal the underlying mechanisms. By applying perturbation, one can generate compositional and functional shifts of complex microbial communities in a controlled way. Perturbations can reduce microbial diversity, diminish the abundance of specific microbial taxa and thereby disturb the interactions within the microbial consortia and with their eukaryotic hosts. Four different microbiome perturbation approaches, namely selective heat, specific biocides, dilution-to-extinction and genome editing are the focus of this mini-review. We also discuss the potential of perturbation approaches to reveal the tipping point at which specific soil functions are lost and to link this change to key microbial taxa involved in specific microbiome-associated phenotypes.
Nanoscale copper particles (nano-Cu) are used in many antimicrobial formulations and products for their antimicrobial activity. They may enter deliberately and/or accidentally into terrestrial environments including soils. Being the major 'eco-receptors' of nanoscale particles in the terrestrial ecosystem, soil-microbiota and plants (the soil-plant system) have been used as a model to dissect the potential impact of these particles on the environmental and human health. In the soil-plant system, the plant can be an indirect non-target organism of the soil-associated nano-Cu that may in turn affect plant-based products and their consumers. By all accounts, information pertaining to nano-Cu toxicity and the underlying potential mechanisms in the soil-plant system remains scanty, deficient and little discussed. Therefore, based on some recent reports from (bio)chemical, molecular and genetic studies of nano-Cu versus soil-plant system, this article: (i) overviews the status, chemistry and toxicity of nano-Cu in soil and plants, (ii) discusses critically the poorly understood potential mechanisms of nano-Cu toxicity and tolerance both in soil-microbiota and plants, and (iii) proposes future research directions. It appears from studies hitherto made that the uncontrolled generation and inefficient metabolism of reactive oxygen species through different reactions are the major factors underpinning the overall nano-Cu consequences in both the systems. However, it is not clear whether the nano-Cu or the ion released from it is the cause of the toxicity. We advocate to intensify the multi-approach studies focused at a complete characterization of the nano-Cu, its toxicity (during life cycles of the least-explored soil-microbiota and plants), and behavior in an environmentally relevant terrestrial exposure setting. Such studies may help to obtain a deeper insight into nano-Cu actions and address adequately the nano-Cu-associated safety concerns in the 'soil-plant system'.
The paper deals with the influence of soil genesis on the physical-mechanical properties. The presented case study was conducted in the region of the Ostrava Basin where there is a varied genetic composition of the Quaternary geological structure on the underlying Neogeneous sediments which are sediments of analogous granulometry but different genesis. In this study, 7827 soil samples of an eolian, fluvial, glacial, and deluvial origin and their laboratory analyses results were used. The study identified different values in certain cases, mostly in coarser-grained foundation soils, such as sandy loam S4 (MS) and clayey sand F4 (CS). The soils of the fluvial origin manifest different values than other genetic types. Next, based on regression analyses, dependence was proved neither on the deposition depth (depth of samples) nor from the point of view of the individual foundation soil classes or the genetic types. The contribution of the paper is to point at the influence of genesis on the foundation soil properties so that engineering geologists and geotechnicians pay more attention to the genesis during engineering-geological and geotechnical investigations.
Despite their importance, how plant communities and soil microorganisms interact to determine the capacity of ecosystems to provide multiple functions simultaneously (multifunctionality) under climate change is poorly known. We conducted a common garden experiment using grassland species to evaluate how plant functional structure and soil microbial (bacteria and protists) diversity and abundance regulate soil multifunctionality responses to joint changes in plant species richness (one, three and six species) and simulated climate change (3°C warming and 35% rainfall reduction). The effects of species richness and climate on soil multifunctionality were indirectly driven via changes in plant functional structure and their relationships with the abundance and diversity of soil bacteria and protists. More specifically, warming selected for the larger and most productive plant species, increasing the average size within communities and leading to reductions in functional plant diversity. These changes increased the total abundance of bacteria that, in turn, increased that of protists, ultimately promoting soil multifunctionality. Our work suggests that cascading effects between plant functional traits and the abundance of multitrophic soil organisms largely regulate the response of soil multifunctionality to simulated climate change, and ultimately provides novel experimental insights into the mechanisms underlying the effects of biodiversity and climate change on ecosystem functioning.
A soil naturally containing montmorillonite (M) was amended with 10% M and sequentially perfused with glyeme, with fresh glyeme being added every 16--17d after nitrification of the previously added glycine-nitrogen had reached a plateau. In some systems, the old perfusates were replaced each time with a fresh glycine solution; in others, the initial perfusate was not replaced but only adjusted each time to the original 200 ml volume and a comparable glycine concentration (140 micrograms NH2-N/ml). The incorporation of M enhanced the rates of heterotrophic degradation of glycine and subsequent autotrophic nitrification, but these stimulatory effects decreased with each successive perfusion. The reasons for these decreases are not known, but they did not appear to be related to inorganic nutrition, as perfusion with a mixed cation solution after five perfusion cycles did not significantly enhance nitrification in either the check or M-amended soils during three subsequent perfusions with glycine. The enhancement of nitrification by M appeared to be a result, in part, of the greater buffering capacity of the M-amended soil, as indicated by lesser reductions in the pH of perfusates from the M-amended soil, by titration curves of the soils, and by the greater and longer stimulation of nitrification in the check soil amended with 1% CaCO3, which had a greater buffering capacity than did M. The stimulation by CaCO3 may also have been partially the result of providing CO2 for the autotrophic nitrifyers. Significant concentrations of nitrite accumulated only in perfusates from soil amended with CaCO3. Air-drying and remoistening the soils enhanced nitrification of subsequently added glycine, especially in the check soil. The importance of pH-mediation, of the production of inhibitors, and/or of feed-back inhibition was indicated by the lower rate and extent of nitrification in systems wherein the perfusates were not replaced between successive additions of glycine. Although the results of these studies confirmed previous observations that M enhances the rate of nitrification in soil, the mechanisms responsible for this stimulation are still not known.
Bacterial genes responsible for resistance to antibiotic agents (ARG) are spread from livestock to soil through application of manure, threatening environmental and human health. We investigated the mechanisms of ARG dissemination and persistence to disentangle i) the influence of nutrients and microorganisms on the soil tetracycline (TET) resistome, and ii) the role of indigenous soil microbiota in preventing ARG spread. We analysed short-term (7 days) and persistent (84 days) effects of manure on the resistome of three antibiotic-free pasture soils. Four microcosm treatments were evaluated: control, mineral nutrient fertilization, and deposition of a layer of fresh manure onto soil or γ-irradiated soil. We quantified five TET-resistance genes, isolated 135 TET-resistant bacteria and sequenced both culturable TET-resistant and whole bacterial communities. Manure amendments, but not nutrient addition, increased the abundance of TET-r genes such as tet(Y). Such changes persisted with time, in contrast with the TET-resistant bacterial composition, which partially recovered after manure amendments. Manured γ-irradiated soils showed significantly lower nutrient content and higher TET-r gene abundance than non-irradiated soils, suggesting that native soil bacteria are essential for the fertilization effect of manure on soil as well as control the dissemination of potentially risky TET-r genes.
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria účinky léků genetika MeSH
- bakteriální geny genetika MeSH
- hnůj mikrobiologie MeSH
- půdní mikrobiologie * MeSH
- rezistence na tetracyklin genetika MeSH
- skot MeSH
- tetracyklin farmakologie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Secondary metabolites produced by myxobacterial genera are often characterized as diverse molecules with unique structural properties which drove us to search for myxobacterial source of anti-diabetic drug discovery. In the present study, from 80 soil samples, out of sixty-five observed isolates, 30 and 16 were purified as Myxococcus and non-Myxococcus, respectively. Isolated strains taxonomically belonged to the genera Myxococcus, Corallococcus and Cystobacter, Archangium, Nanocystis, and Sorangium, and some could not be attributed. Secondary metabolites of selected non-Myxococcus isolates extracted by the liquid-liquid method showed that the myxobacterium UTMC 4530 demonstrated the highest inhibition on the formation of carbonyl group and fructosamine, respectively. In addition, it showed 23% and 15.8% inhibitory activity on α-glucosides and α-amylase compared to acarbose (23%, 18%), respectively. The extract of strain UTMC 4530 showed 35% induction effect on glucose adsorption while showing no radical scavenging activity and no toxic effect on HRBC lysis and HepG2 in cytotoxicity assays. The strain UTMC 4530 (ON808962), with the multiple antidiabetic activity, showed 87.3% similarity to Corallococcus llansteffanensis which indicates its affiliation to a new genus. The results of this study revealed that secondary metabolites produced by strain UTMC 4530 can be considered a promising source to find new therapeutic and pharmaceutical applications perhaps a multi-mechanism anti-diabetic compound.
- MeSH
- fylogeneze MeSH
- Myxococcales * metabolismus MeSH
- Myxococcus * MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
Anthropogenically enhanced atmospheric sulphur (S) and nitrogen (N) deposition has acidified and eutrophied forest ecosystems worldwide. However, both S and N mechanisms have an impact on microbial communities and the consequences for microbially driven soil functioning differ. We conducted a two-forest stand (Norway spruce and European beech) field experiment involving acidification (sulphuric acid addition) and N (ammonium nitrate) loading and their combination. For 4 years, we monitored separate responses of soil microbial communities to the treatments and investigated the relationship to changes in the activity of extracellular enzymes. We observed that acidification selected for acidotolerant and oligotrophic taxa of Acidobacteria and Actinobacteria decreased bacterial community richness and diversity in both stands in parallel, disregarding their original dissimilarities in soil chemistry and composition of microbial communities. The shifts in bacterial community influenced the stoichiometry and magnitude of enzymatic activity. The bacterial response to experimental N addition was much weaker, likely due to historically enhanced N availability. Fungi were not influenced by any treatment during 4-year manipulation. We suggest that in the onset of acidification when fungi remain irresponsive, bacterial reaction might govern the changes in soil enzymatic activity.
- MeSH
- Bacteria genetika MeSH
- buk (rod) * MeSH
- dusík analýza MeSH
- houby MeSH
- koncentrace vodíkových iontů MeSH
- lesy MeSH
- půda * MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Norsko MeSH