CapZyme-Seq Comprehensively Defines Promoter-Sequence Determinants for RNA 5' Capping with NAD
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM041376
NIGMS NIH HHS - United States
R01 GM067005
NIGMS NIH HHS - United States
R35 GM118059
NIGMS NIH HHS - United States
R37 GM041376
NIGMS NIH HHS - United States
PubMed
29681497
PubMed Central
PMC5935523
DOI
10.1016/j.molcel.2018.03.014
PII: S1097-2765(18)30217-X
Knihovny.cz E-zdroje
- Klíčová slova
- NudC, RNA capping, RNA polymerase, RNA-seq, Rai1, nicotinamide adenine dinucleotide, non-canonical initiating nucleotide, transcription, transcription initiation, transcription start site,
- MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- endoribonukleasy metabolismus MeSH
- Escherichia coli genetika metabolismus MeSH
- exprese genu genetika MeSH
- genetická transkripce genetika MeSH
- NAD metabolismus MeSH
- nukleotidy genetika MeSH
- počátek transkripce fyziologie MeSH
- promotorové oblasti (genetika) genetika MeSH
- RNA čepičky genetika MeSH
- transkriptom genetika MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA řízené RNA-polymerasy MeSH
- endoribonukleasy MeSH
- mRNA decapping enzymes MeSH Prohlížeč
- NAD MeSH
- nukleotidy MeSH
- RNA čepičky MeSH
Nucleoside-containing metabolites such as NAD+ can be incorporated as 5' caps on RNA by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase (RNAP). Here, we report CapZyme-seq, a high-throughput-sequencing method that employs NCIN-decapping enzymes NudC and Rai1 to detect and quantify NCIN-capped RNA. By combining CapZyme-seq with multiplexed transcriptomics, we determine efficiencies of NAD+ capping by Escherichia coli RNAP for ∼16,000 promoter sequences. The results define preferred transcription start site (TSS) positions for NAD+ capping and define a consensus promoter sequence for NAD+ capping: HRRASWW (TSS underlined). By applying CapZyme-seq to E. coli total cellular RNA, we establish that sequence determinants for NCIN capping in vivo match the NAD+-capping consensus defined in vitro, and we identify and quantify NCIN-capped small RNAs (sRNAs). Our findings define the promoter-sequence determinants for NCIN capping with NAD+ and provide a general method for analysis of NCIN capping in vitro and in vivo.
Department of Cell Biology and Neuroscience Rutgers University Piscataway NJ 08854 USA
Department of Chemistry and Waksman Institute Rutgers University Piscataway NJ 08854 USA
Department of Genetics and Waksman Institute Rutgers University Piscataway NJ 08854 USA
Zobrazit více v PubMed
Arribas-Layton M, Wu D, Lykke-Andersen J, Song H. Structural and functional control of the eukaryotic mRNA decapping machinery. Biochim Biophys Acta. 2013;1829:580–589. PubMed PMC
Artsimovitch I, Svetlov V, Murakami KS, Landick R. Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions. JBC. 2003;278:12344–12355. PubMed
Barvik I, Rejman D, Panova N, Sanderova H, Krasny L. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. FEMS Microbiol Rev. 2017;41:131–138. PubMed
Bird JG, Nickels BE, Ebright RH. RNA Capping by Transcription Initiation with Non-canonical Initiating Nucleotides (NCINs): Determination of Relative Efficiencies of Transcription Initiation with NCINs and NTPs. Bio-protocol. 2017:7. PubMed PMC
Bird JG, Zhang Y, Tian Y, Panova N, Barvik I, Greene L, Liu M, Buckley B, Krasny L, Lee JK, et al. The mechanism of RNA 5′ capping with NAD+, NADH and desphospho-CoA. Nature. 2016;535:444–447. PubMed PMC
Cahova H, Winz ML, Hofer K, Nubel G, Jaschke A. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature. 2015;519:374–377. PubMed
Chen YG, Kowtoniuk WE, Agarwal I, Shen Y, Liu DR. LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nature Chem Biol. 2009;5:879–881. PubMed PMC
Devarkar SC, Wang C, Miller MT, Ramanathan A, Jiang F, Khan AG, Patel SS, Marcotrigiano J. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. PNAS. 2016;113:596–601. PubMed PMC
Furuichi Y, Shatkin AJ. Viral and cellular mRNA capping: past and prospects. Adv Virus Res. 2000;55:135–184. PubMed PMC
Ghosh A, Lima CD. Enzymology of RNA cap synthesis. Wiley interdisciplinary reviews. RNA. 2010;1:152–172. PubMed PMC
Grudzien-Nogalska E, Kiledjian M. New insights into decapping enzymes and selective mRNA decay. Wiley interdisciplinary reviews RNA. 2017:8. PubMed PMC
Hofer K, Jaschke A. Molecular biology: A surprise beginning for RNA. Nature. 2016;535:359–360. PubMed
Hofer K, Li S, Abele F, Frindert J, Schlotthauer J, Grawenhoff J, Du J, Patel DJ, Jaschke A. Structure and function of the bacterial decapping enzyme NudC. Nature Chem Biol. 2016;12:730–734. PubMed PMC
Jaschke A, Hofer K, Nubel G, Frindert J. Cap-like structures in bacterial RNA and epitranscriptomic modification. Cur Opin Microbiol. 2016;30:44–49. PubMed
Jensen KF, Fast R, Karlstrom O, Larsen JN. Association of RNA polymerase having increased Km for ATP and UTP with hyperexpression of the pyrB and pyrE genes of Salmonella typhimurium. J Bacteriol. 1986;166:857–865. PubMed PMC
Jiao X, Doamekpor SK, Bird JG, Nickels BE, Tong L, Hart RP, Kiledjian M. 5′ End Nicotinamide Adenine Dinucleotide Cap in Human Cells Promotes RNA Decay through DXO-Mediated deNADding. Cell. 2017;168:1015–1027. e1010. PubMed PMC
Julius C, Yuzenkova Y. Bacterial RNA polymerase caps RNA with various cofactors and cell wall precursors. NAR. 2017;45:8282–8290. PubMed PMC
Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martinez C, Caspi R, Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, et al. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. NAR. 2017;45:D543–D550. PubMed PMC
Kowtoniuk WE, Shen Y, Heemstra JM, Agarwal I, Liu DR. A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA. PNAS. 2009;106:7768–7773. PubMed PMC
Li Y, Kiledjian M. Regulation of mRNA decapping. Wiley interdisciplinary reviews. RNA. 2010;1:253–265. PubMed
Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6:26. PubMed PMC
Malygin AG, Shemyakin MF. Adenosine, NAD and FAD can initiate template-dependent RNA synthesis catalyzed by Escherichia coli RNA polymerase. FEBS letters. 1979;102:51–54. PubMed
Marr MT, Roberts JW. Promoter recognition as measured by binding of polymerase to nontemplate strand oligonucleotide. Science. 1997;276:1258–1260. PubMed
Martinez-Rucobo FW, Kohler R, van de Waterbeemd M, Heck AJ, Hemann M, Herzog F, Stark H, Cramer P. Molecular Basis of Transcription-Coupled Pre-mRNA Capping. Mol Cell. 2015;58:1079–1089. PubMed
Nubel G, Sorgenfrei FA, Jaschke A. Boronate affinity electrophoresis for the purification and analysis of cofactor-modified RNAs. Methods. 2017;117:14–20. PubMed
Ramanathan A, Robb GB, Chan SH. mRNA capping: biological functions and applications. NAR. 2016;44:7511–7526. PubMed PMC
Rhodes G, Chamberlin MJ. Ribonucleic acid chain elongation by Escherichia coli ribonucleic acid polymerase. I. Isolation of ternary complexes and the kinetics of elongation. JBC. 1974;249:6675–6683. PubMed
Shatkin AJ. Capping of eucaryotic mRNAs. Cell. 1976;9:645–653. PubMed
Shuman S. Structure, mechanism, and evolution of the mRNA capping apparatus. Prog Nucleic Acid Res Mol Biol. 2001;66:1–40. PubMed
Shuman S. RNA capping: progress and prospects. RNA. 2015;21:735–737. PubMed PMC
Svetlov V, Artsimovitch I. Purification of bacterial RNA polymerase: tools and protocols. Methods Mol Biol. 2015;1276:13–29. PubMed PMC
Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Cap and cap-binding proteins in the control of gene expression. Wiley interdisciplinary reviews. RNA. 2011;2:277–298. PubMed
Vvedenskaya IO, Zhang Y, Goldman SR, Valenti A, Visone V, Taylor DM, Ebright RH, Nickels BE. Massively Systematic Transcript End Readout, “MASTER”: Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields. Mol Cell. 2015;60:953–965. PubMed PMC
Walters RW, Matheny T, Mizoue LS, Rao BS, Muhlrad D, Parker R. Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America. 2017;114:480–485. PubMed PMC
Wei CM, Gershowitz A, Moss B. Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell. 1975;4:379–386. PubMed
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; 2009.
Wickham H, Francois R. dplyr: a grammar of data manipulation R package version 0.5.0 2016
Winkelman JT, Vvedenskaya IO, Zhang Y, Zhang Y, Bird JG, Taylor DM, Gourse RL, Ebright RH, Nickels BE. Multiplexed protein-DNA cross-linking: Scrunching in transcription start site selection. Science. 2016;351:1090–1093. PubMed PMC
Winz ML, Cahova H, Nubel G, Frindert J, Hofer K, Jaschke A. Capture and sequencing of NAD-capped RNA sequences with NAD captureSeq. Nature Prot. 2017;12:122–149. PubMed
Xiang S, Cooper-Morgan A, Jiao X, Kiledjian M, Manley JL, Tong L. Structure and function of the 5′-->3′ exoribonuclease Rat1 and its activating partner Rai1. Nature. 2009;458:784–788. PubMed PMC
Zhang Y, Feng Y, Chatterjee S, Tuske S, Ho MX, Arnold E, Ebright RH. Structural basis of transcription initiation. Science. 2012;338:1076–1080. PubMed PMC