Impact of inherent biases built into proteomic techniques: Proximity labeling and affinity capture compared

. 2023 Jan ; 299 (1) : 102726. [epub] 20221119

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36410438

Grantová podpora
MR/P009018/1 Medical Research Council - United Kingdom
P41 GM103314 NIGMS NIH HHS - United States
R01 GM112108 NIGMS NIH HHS - United States
U54 GM103511 NIGMS NIH HHS - United States
Wellcome Trust - United Kingdom
R01 AI140429 NIAID NIH HHS - United States
P41 GM109824 NIGMS NIH HHS - United States
108445/Z/15/Z Wellcome Trust - United Kingdom
097945/B/11/Z Wellcome Trust - United Kingdom
204697/Z/16/Z Wellcome Trust - United Kingdom
082813/Z/07/Z Wellcome Trust - United Kingdom

Odkazy

PubMed 36410438
PubMed Central PMC9791439
DOI 10.1016/j.jbc.2022.102726
PII: S0021-9258(22)01169-3
Knihovny.cz E-zdroje

The characterization of protein-protein interactions (PPIs) is of high value for understanding protein function. Two strategies are popular for identification of PPIs direct from the cellular environment: affinity capture (pulldown) isolates the protein of interest with an immobilized matrix that specifically captures the target and potential partners, whereas in BioID, genetic fusion of biotin ligase facilitates proximity biotinylation, and labeled proteins are isolated with streptavidin. Whilst both methods provide valuable insights, they can reveal distinct PPIs, but the basis for these differences is less obvious. Here, we compare both methods using four different trypanosome proteins as baits: poly(A)-binding proteins PABP1 and PABP2, mRNA export receptor MEX67, and the nucleoporin NUP158. With BioID, we found that the population of candidate interacting proteins decreases with more confined bait protein localization, but the candidate population is less variable with affinity capture. BioID returned more likely false positives, in particular for proteins with less confined localization, and identified low molecular weight proteins less efficiently. Surprisingly, BioID for MEX67 identified exclusively proteins lining the inner channel of the nuclear pore complex (NPC), consistent with the function of MEX67, whereas the entire NPC was isolated by pulldown. Similarly, for NUP158, BioID returned surprisingly few PPIs within NPC outer rings that were by contrast detected with pulldown but instead returned a larger cohort of nuclear proteins. These rather significant differences highlight a clear issue with reliance on a single method to identify PPIs and suggest that BioID and affinity capture are complementary rather than alternative approaches.

Zobrazit více v PubMed

Dunham W.H., Mullin M., Gingras A. Affinity-purification coupled to mass spectrometry: basic principles and strategies. Proteomics. 2012;12:1576–1590. PubMed

Bosch J.A., Chen C., Perrimon N. Proximity-dependent labeling methods for proteomic profiling in living cells: an update. Wiley Inter. Rev. Dev. Biol. 2021;10:e392. PubMed PMC

Obado S.O., Field M.C., Chait B.T., Rout M.P. High-efficiency isolation of nuclear envelope protein complexes from trypanosomes. Met. Mol. Biol. (Clifton, NJ) 2016;1411:67–80. PubMed

LaCava J., Fernandez-Martinez J., Hakhverdyan Z., Rout M.P. Optimized affinity capture of yeast protein complexes. Cold Spring Harb. Protoc. 2016 doi: 10.1101/pdb.prot087932. PubMed DOI

Roux K.J., Kim D.I., Raida M., Burke B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 2012;196:801–810. PubMed PMC

Chapman-Smith A., Cronan J.E. In vivo enzymatic protein biotinylation. Biomol. Eng. 1999;16:119–125. PubMed

Choi-Rhee E., Schulman H., Cronan J.E. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Sci. 2004;13:3043–3050. PubMed PMC

Branon T.C., Bosch J.A., Sanchez A.D., Udeshi N.D., Svinkina T., Carr S.A., et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 2018;36:880–887. PubMed PMC

May D.G., Scott K.L., Campos A.R., Roux K.J. Comparative application of BioID and TurboID for protein-proximity biotinylation. Cells. 2020;9:1070. PubMed PMC

Zoltner M., Krienitz N., Field M.C., Kramer S. Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA. PLoS Negl. Trop. Dis. 2018;12 PubMed PMC

Obado S.O., Brillantes M., Uryu K., Zhang W., Ketaren N.E., Chait B.T., et al. Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol. 2016;14 PubMed PMC

Boehm C.M., Obado S., Gadelha C., Kaupisch A., Manna P.T., Gould G.W., et al. The trypanosome exocyst: a conserved structure revealing a new role in endocytosis. PLoS Pathog. 2017;13 PubMed PMC

Luo Y., Jacobs E.Y., Greco T.M., Mohammed K.D., Tong T., Keegan S., et al. HIV–host interactome revealed directly from infected cells. Nat. Microbiol. 2016;1 PubMed PMC

Heider M.R., Gu M., Duffy C.M., Mirza A.M., Marcotte L.L., Walls A.C., et al. Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nat. Struct. Mol. Biol. 2016;23:59–66. PubMed PMC

Kramer S., Queiroz R., Ellis L., Webb H., Hoheisel J.D., Clayton C.E., et al. Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(alpha) phosphorylation at Thr169. J. Cell Sci. 2008;121:3002–3014. PubMed PMC

Stewart M. Polyadenylation and nuclear export of mRNAs. J. Biol. Chem. 2019;294:2977–2987. PubMed PMC

Kramer S., Kimblin N.C., Carrington M. Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. BMC Genomics. 2010;11:283. PubMed PMC

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Met. 2016;13:731–740. PubMed

Hu H., Zhou Q., Li Z. SAS-4 protein in trypanosoma brucei controls life cycle transitions by modulating the length of the flagellum attachment zone filament. J. Biol. Chem. 2015;290:30453–30463. PubMed PMC

Dean S., Sunter J.D., Wheeler R.J. TrypTag.org: a trypanosome genome-wide protein localisation resource. Trends Parasitol. 2017;33:80–82. PubMed PMC

Dang H.Q., Zhou Q., Rowlett V.W., Hu H., Lee K.J., Margolin W., et al. Proximity interactions among basal body components in trypanosoma brucei identify novel regulators of basal body biogenesis and inheritance. mBio. 2017 doi: 10.1128/mbio.02120-16. PubMed DOI PMC

Fritz M., Vanselow J., Sauer N., Lamer S., Goos C., Siegel T.N., et al. Novel insights into RNP granules by employing the trypanosome’s microtubule skeleton as a molecular sieve. Nucl. Acids Res. 2015;43:8013–8032. PubMed PMC

Goos C., Dejung M., Janzen C.J., Butter F., Kramer S. The nuclear proteome of Trypanosoma brucei. PLoS One. 2017;12 PubMed PMC

Morriswood B., Havlicek K., Demmel L., Yavuz S., Sealey-Cardona M., Vidilaseris K., et al. Novel bilobe components in trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryot. Cell. 2013;12:356–367. PubMed PMC

DeGrasse J.A., DuBois K.N., Devos D., Siegel T.N., Sali A., Field M.C., et al. Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol. Cell Proteomics. 2009;8:2119–2130. PubMed PMC

Kramer S., Bannerman-Chukualim B., Ellis L., Boulden E.A., Kelly S., Field M.C., et al. Differential localization of the two T. Brucei poly(A) binding proteins to the nucleus and RNP granules suggests binding to distinct mRNA pools. PLoS One. 2013;8 PubMed PMC

Cassola A., Gaudenzi J.G.D., Frasch A.C. Recruitment of mRNAs to cytoplasmic ribonucleoprotein granules in trypanosomes. Mol. Microbiol. 2007;65:655–670. PubMed

Lima T.D. da C., Moura D.M.N., Reis C.R.S., Vasconcelos J.R.C., Ellis L., Carrington M., et al. Functional characterization of three leishmania poly(a) binding protein homologues with distinct binding properties to RNA and protein partners. Eukaryot. Cell. 2010;9:1484–1494. PubMed PMC

Lueong S., Merce C., Fischer B., Hoheisel J.D., Erben E.D. Gene expression regulatory networks in trypanosoma brucei: insights into the role of the mRNA-binding proteome. Mol. Microbiol. 2016;100:457–471. PubMed

Pablos L.M.D., Kelly S., Nascimento J. de F., Sunter J., Carrington M. Characterization of RBP9 and RBP10, two developmentally regulated RNA-binding proteins in Trypanosoma brucei. Open Biol. 2017;7:160159. PubMed PMC

Segref A., Sharma K., Doye V., Hellwig A., Huber J., Lührmann R., et al. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J. 1997;16:3256–3271. PubMed PMC

Katahira J., Strässer K., Podtelejnikov A., Mann M., Jung J.U., Hurt E. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J. 1999;18:2593–2609. PubMed PMC

Kramer S. Nuclear mRNA maturation and mRNA export control: from trypanosomes to opisthokonts. Parasitology. 2021;148:1196–1218. PubMed PMC

Schwede A., Manful T., Jha B.A., Helbig C., Bercovich N., Stewart M., et al. The role of deadenylation in the degradation of unstable mRNAs in trypanosomes. Nucl. Acids Res. 2009;37:5511–5528. PubMed PMC

Dostalova A., Käser S., Cristodero M., Schimanski B. The nuclear mRNA export receptor Mex67-Mtr2 of Trypanosoma brucei contains a unique and essential zinc finger motif. Mol. Microbiol. 2013;88:728–739. PubMed

Lei E.P., Stern C.A., Fahrenkrog B., Krebber H., Moy T.I., Aebi U., et al. Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex. Mol. Biol. Cell. 2003;14:836–847. PubMed PMC

Gabernet-Castello C., O’Reilly A.J., Dacks J.B., Field M.C. Evolution of tre-2/bub2/Cdc16 (TBC) rab GTPase-activating proteins. Mol. Biol. Cell. 2013;24:1574–1583. PubMed PMC

Obado S.O., Stein M., Hegedűsová E., Wenzhu Zhang W., Hutchinson S., Brillantes M., et al. Mex67 paralogs mediate division of labor in trypanosome RNA processing and export. bioRxiv. 2022 doi: 10.1101/2022.06.27.497849. [preprint] DOI

Zhou Q., Hu H., He C.Y., Li Z. Assembly and maintenance of the flagellum attachment zone filament in Trypanosoma brucei. J. Cell Sci. 2015;128:2361–2372. PubMed PMC

Buhlmann M., Walrad P., Rico E., Ivens A., Capewell P., Naguleswaran A., et al. NMD3 regulates both mRNA and rRNA nuclear export in African trypanosomes via an XPOI-linked pathway. Nucl. Acids Res. 2015 doi: 10.1093/nar/gkv330. PubMed DOI PMC

Yao W., Lutzmann M., Hurt E. A versatile interaction platform on the Mex67–Mtr2 receptor creates an overlap between mRNA and ribosome export. EMBO J. 2008;27:6–16. PubMed PMC

Derrer C.P., Mancini R., Vallotton P., Huet S., Weis K., Dultz E. The RNA export factor Mex67 functions as a mobile nucleoporin. J. Cell Biol. 2019;218:3967–3976. PubMed PMC

Lambert J.-P., Tucholska M., Go C., Knight J.D.R., Gingras A.-C. Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. J. Proteomics. 2015;118:81–94. PubMed PMC

Hesketh G.G., Youn J.Y., Samavarchi-Tehrani P., Raught B., Gingras A.C. Parallel exploration of interaction space by BioID and affinity purification coupled to mass spectrometry. Met. Mol. Biol. 2017;1550:115–136. PubMed

Liu X., Salokas K., Tamene F., Jiu Y., Weldatsadik R.G., Öhman T., et al. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat. Commun. 2018;9:1188. PubMed PMC

Chojnowski A., Sobota R.M., Ong P.F., Xie W., Wong X., Dreesen O., et al. 2C-BioID: an advanced two component BioID system for precision mapping of protein interactomes. Iscience. 2018;10:40–52. PubMed PMC

Schopp I.M., Ramirez C.C.A., Debeljak J., Kreibich E., Skribbe M., Wild K., et al. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nat. Commun. 2017;8:1–14. PubMed PMC

Udeshi N.D., Pedram K., Svinkina T., Fereshetian S., Myers S.A., Aygun O., et al. Antibodies to biotin enable large-scale detection of biotinylation sites on proteins. Nat. Met. 2017;14:1167–1170. PubMed PMC

Kim D.I., Cutler J.A., Na C.H., Reckel S., Renuse S., Madugundu A.K., et al. BioSITe: a method for direct detection and quantitation of site-specific biotinylation. J. Proteome Res. 2018;17:759–769. PubMed PMC

Brun R., Schönenberger Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Tropica. 1979;36:289–292. PubMed

McCulloch R., Vassella E., Burton P., Boshart M., Barry J.D. Transformation of monomorphic and pleomorphic Trypanosoma brucei. Met. Mol. Biol. (Clifton, NJ) 2004;262:53–86. PubMed

Kelly S., Reed J., Kramer S., Ellis L., Webb H., Sunter J., et al. Functional genomics in trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol. Biochem. Parasitol. 2007;154:103–109. PubMed PMC

Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2:1896–1906. PubMed

Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. PubMed

Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteomics. 2014;13:2513–2526. PubMed PMC

Zoltner M., Pino R. C. del, Field M.C. Trypanosomatids, methods and protocols. Met. Mol. Biol. 2020;2116:645–653. PubMed

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucl. Acids Res. 2019;47:D442–D450. PubMed PMC

Lacomble S., Vaughan S., Deghelt M., Moreira-Leite F.F., Gull K. A trypanosoma brucei protein required for maintenance of the flagellum attachment zone and flagellar pocket ER domains. Ann. Anatomy. 2012;163:602–615. PubMed PMC

DuBois K.N., Alsford S., Holden J.M., et al. NUP-1 Is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol. 2012;10:e1001287. PubMed PMC

Yavuz S., Warren G. A role for Sar1 and ARF1 GTPases during Golgi biogenesis in the protozoan parasite Trypanosoma brucei. Mol. Biol. Cell. 2017;28:1782–1791. PubMed PMC

Yorimitsu T., Sato K., Takeuchi M. Molecular mechanisms of Sar/Arf GTPases in vesicular trafficking in yeast and plants. Front. Plant Sci. 2014;5:411. PubMed PMC

Milman N., Motyka S.A., Englund P.T., Robinson D., Shlomai J. Mitochondrial origin-binding protein UMSBP mediates DNA replication and segregation in trypanosomes. Proc. Natl. Acad. Sci. U.S.A. 2007;104:19250–19255. PubMed PMC

Kramer S. The ApaH-like phosphatase TbALPH1 is the major mRNA decapping enzyme of trypanosomes. PLoS Pathog. 2017;13 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace