A comprehensive toolkit for protein localization and functional analysis in trypanosomatids
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Academy of Medical Sciences - United Kingdom
Wellcome Trust - United Kingdom
A*STAR
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
40169015
PubMed Central
PMC11961264
DOI
10.1098/rsob.240361
Knihovny.cz E-zdroje
- Klíčová slova
- expansion microscopy, protein tagging, toolkit, trypanosomatid, trypanosome,
- MeSH
- epitopy metabolismus MeSH
- lidé MeSH
- plazmidy * metabolismus genetika MeSH
- protozoální proteiny * metabolismus genetika MeSH
- transport proteinů MeSH
- Trypanosoma brucei brucei metabolismus genetika MeSH
- Trypanosoma genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- epitopy MeSH
- protozoální proteiny * MeSH
African trypanosomes are medically important parasites that cause sleeping sickness in humans and nagana in animals. In addition to their pathogenic role, they have emerged as valuable model organisms for studying fundamental biological processes. Protein tagging is a powerful tool for investigating protein localization and function. In a previous study, we developed two plasmids for rapid and reproducible polymerase chain reaction-based protein tagging in trypanosomes, which enabled the subcellular mapping of 89% of the trypanosome proteome. However, the limited selection of fluorescent protein tags and selectable markers restricted the flexibility of this approach. Here, we present an extended set of >100 plasmids that incorporate universal primer annealing sequences, enabling protein tagging with a range of fluorescent, biochemical and epitope tags, using five different selection markers. We evaluated the suitability of various fluorescent proteins for live and fixed cell imaging, fluorescent movies, and we demonstrate the use of tagging plasmids encoding tandem epitope tags to support expansion microscopy approaches. We show that this series of plasmids is functional in other trypanosomatid parasites, significantly increasing its value. Finally, we developed a new plasmid for tagging glycosylphosphatidylinositol-anchored proteins. We anticipate that this will be an important toolset for investigating trypanosomatid protein localization and function.
Department of Biological and Medical Sciences Oxford Brookes University Oxford UK
Department of Life Sciences Imperial College London London UK
Directorate of Biomedical Sciences Warwick Medical School University of Warwick Coventry UK
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
The Sir William Dunn School of Pathology University of Oxford Oxford UK
Zobrazit více v PubMed
Hoelzel CA, Zhang X. 2020. Visualizing and manipulating biological processes by using HaloTag and SNAP‐Tag technologies. ChemBioChem 21, 1935–1946. (10.1002/cbic.202000037) PubMed DOI PMC
Vandemoortele G, Eyckerman S, Gevaert K. 2019. Pick a tag and explore the functions of your pet protein. Trends Biotechnol. 37, 1078–1090. (10.1016/j.tibtech.2019.03.016) PubMed DOI
Dean S, Sunter J, Wheeler RJ, Hodkinson I, Gluenz E, Gull K. 2015. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 5, 140197. (10.1098/rsob.140197) PubMed DOI PMC
Shaner NC, et al. . 2013. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409. (10.1038/nmeth.2413) PubMed DOI PMC
Campbell BC, et al. . 2020. mGreenLantern: a bright monomeric fluorescent protein with rapid expression and cell filling properties for neuronal imaging. Proc. Natl Acad. Sci. USA 117, 30710–30721. (10.1073/pnas.2000942117) PubMed DOI PMC
Bindels DS, et al. . 2017. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56. (10.1038/nmeth.4074) PubMed DOI
Bastin P, Bagherzadeh A, Matthews KR, Gull K. 1996. A novel epitope tag system to study protein targeting and organelle biogenesis in Trypanosoma brucei. Mol. Biochem. Parasitol. 77, 235–239. (10.1016/0166-6851(96)02598-4) PubMed DOI
Gorilak P, Pružincová M, Vachova H, Olšinová M, Schmidt Cernohorska M, Varga V. 2021. Expansion microscopy facilitates quantitative super-resolution studies of cytoskeletal structures in kinetoplastid parasites. Open Biol. 11, 210131. (10.1098/rsob.210131) PubMed DOI PMC
Kalichava A, Ochsenreiter T. 2021. Ultrastructure expansion microscopy in Trypanosoma brucei. Open Biol. 11, 210132. (10.1098/rsob.210132) PubMed DOI PMC
Wassie AT, Zhao Y, Boyden ES. 2019. Expansion microscopy: principles and uses in biological research. Nat. Methods 16, 33–41. (10.1038/s41592-018-0219-4) PubMed DOI PMC
Lambert TJ. 2019. FPbase: a community-editable fluorescent protein database. Nat. Methods 16, 277–278. (10.1038/s41592-019-0352-8) PubMed DOI
Botman D, de Groot DH, Schmidt P, Goedhart J, Teusink B. 2018. In vivo characterisation of fluorescent proteins in budding yeast. Zenodo. (10.5281/zenodo.1468183) PubMed DOI PMC
Dean S, Moreira-Leite F, Varga V, Gull K. 2016. Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes. Proc. Natl Acad. Sci. USA 113, E5135–43. (10.1073/pnas.1604258113) PubMed DOI PMC
Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY. 2004. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572. (10.1038/nbt1037) PubMed DOI
Chu J, et al. . 2014. Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nat. Methods 11, 572–578. (10.1038/nmeth.2888) PubMed DOI PMC
Jordan MA, Pigino G. 2021. The structural basis of intraflagellar transport at a glance. J. Cell Sci. 134, s247163. (10.1242/jcs.247163) PubMed DOI
Bertiaux E, et al. . 2018. Bidirectional intraflagellar transport is restricted to two sets of microtubule doublets in the trypanosome flagellum. J. Cell Biol. 217, 4284–4297. (10.1083/jcb.201805030) PubMed DOI PMC
Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY. 2008. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551. (10.1038/nmeth.1209) PubMed DOI PMC
Dean S, Moreira-Leite F, Gull K. 2019. Basalin is an evolutionarily unconstrained protein revealed via a conserved role in flagellum basal plate function. eLife 8, e42282. (10.7554/elife.42282) PubMed DOI PMC
Balleza E, Kim JM, Cluzel P. 2018. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods 15, 47–51. (10.1038/nmeth.4509) PubMed DOI PMC
Guerra P, Vuillemenot LA, Rae B, Ladyhina V, Milias-Argeitis A. 2022. Systematic in vivo characterization of fluorescent protein maturation in budding yeast. ACS Synth. Biol. 11, 1129–1141. (10.1021/acssynbio.1c00387) PubMed DOI PMC
Odenwald J, Gabiatti B, Braune S, Shen S, Zoltner M, Kramer S. 2024. Detection of TurboID fusion proteins by fluorescent streptavidin outcompetes antibody signals and visualises targets not accessible to antibodies. eLife 13, P95028. (10.7554/elife.95028) PubMed DOI PMC
Smith EF, Lefebvre PA. 1996. PF16 encodes a protein with armadillo repeats and localizes to a single microtubule of the central apparatus in Chlamydomonas flagella. J. Cell Biol. 132, 359–370. (10.1083/jcb.132.3.359) PubMed DOI PMC
Han L, Rao Q, Yang R, Wang Y, Chai P, Xiong Y, Zhang K. 2022. Cryo-EM structure of an active central apparatus. Nat. Struct. Mol. Biol. 29, 472–482. (10.1038/s41594-022-00769-9) PubMed DOI PMC
Deane JA, Cole DG, Seeley ES, Diener DR, Rosenbaum JL. 2001. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11, 1586–1590. (10.1016/s0960-9822(01)00484-5) PubMed DOI
Beneke T, Madden R, Makin L, Valli J, Sunter J, Gluenz E. 2017. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R. Soc. Open Sci. 4, 170095. (10.1098/rsos.170095) PubMed DOI PMC
Gadelha C, Zhang W, Chamberlain JW, Chait BT, Wickstead B, Field MC. 2015. Architecture of a host–parasite interface: complex targeting mechanisms revealed through proteomics. Mol. Cell. Proteom. 14, 1911–1926. (10.1074/mcp.m114.047647) PubMed DOI PMC
Roditi I, et al. . 1989. Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J. Cell Biol. 108, 737–746. (10.1083/jcb.108.2.737) PubMed DOI PMC
Billingdon K. 2022. Genome-wide subcellular protein localisation in the flagellate parasite Trypanosoma brucei. bioRxiv 2022.06.09.495287. (10.1101/2022.06.09.495287) PubMed DOI PMC
Vassella E, Den Abbeele JV, Bütikofer P, Renggli CK, Furger A, Brun R, Roditi I. 2000. A major surface glycoprotein of Trypanosoma brucei is expressed transiently during development and can be regulated post-transcriptionally by glycerol or hypoxia. Genes Dev. 14, 615–626. (10.1101/gad.14.5.615) PubMed DOI PMC
Saada EA, et al. . 2014. Insect stage-specific receptor adenylate cyclases are localized to distinct subdomains of the Trypanosoma brucei flagellar membrane. Eukaryot. Cell 13, 1064–1076. (10.1128/ec.00019-14) PubMed DOI PMC
Costa FC, et al. . 2018. Expanding the toolbox for Trypanosoma cruzi: a parasite line incorporating a bioluminescence-fluorescence dual reporter and streamlined CRISPR/Cas9 functionality for rapid in vivo localisation and phenotyping. PLoS Negl. Trop. Dis. 12, e0006388. (10.1371/journal.pntd.0006388) PubMed DOI PMC
Dean S, Sunter JD, Wheeler RJ. 2017. TrypTag.org: a trypanosome genome-wide protein localisation resource. Trends Parasitol. 33, 80–82. (10.1016/j.pt.2016.10.009) PubMed DOI PMC
Halliday C, Dean S, Sunter JD, Wheeler RJ. 2023. Subcellular protein localisation of Trypanosoma brucei bloodstream form-upregulated proteins maps stage-specific adaptations. Wellcome Open Res. 8, 46. (10.12688/wellcomeopenres.18586.2) PubMed DOI PMC
Engstler M, Beneke T. 2023. Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit. eLife 12, e85605. (10.7554/elife.85605) PubMed DOI PMC
Dean S, Sunter J. 2020. Light microscopy in trypanosomes: use of fluorescent proteins and tags. In Methods in molecular biology trypanosomatids, pp. 367–383, vol. 2116. New York, NY: Springer. (10.1007/978-1-0716-0294-2_23) PubMed DOI
Sage D, Donati L, Soulez F, Fortun D, Schmit G, Seitz A, Guiet R, Vonesch C, Unser M. 2017. DeconvolutionLab2: an open-source software for deconvolution microscopy. Methods 115, 28–41. (10.1016/j.ymeth.2016.12.015) PubMed DOI
Schindelin J, et al. . 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. (10.1038/nmeth.2019) PubMed DOI PMC
Kirshner H, Aguet F, Sage D, Unser M. 2013. 3‐D PSF fitting for fluorescence microscopy: implementation and localization application. J. Microsc. 249, 13–25. (10.1111/j.1365-2818.2012.03675.x) PubMed DOI
Teufel F, et al. . 2022. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025. (10.1038/s41587-021-01156-3) PubMed DOI PMC
Gíslason MH, Nielsen H, Almagro Armenteros JJ, Johansen AR. 2021. Prediction of GPI-anchored proteins with pointer neural networks. Curr. Res. Biotechnol. 3, 6–13. (10.1016/j.crbiot.2021.01.001) DOI
Paterou A, Sáez-Conde J, Týč J, Sunter JD, Vaughan S, Gull Ket al. . 2025. Supplementary material from: A comprehensive toolkit for protein localisation and functional analysis in trypanosomatids. Figshare. (10.6084/m9.figshare.c.7717940) PubMed DOI