MicroRNA-34a activation in tuberous sclerosis complex during early brain development may lead to impaired corticogenesis
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33942341
PubMed Central
PMC8519131
DOI
10.1111/nan.12717
Knihovny.cz E-resources
- Keywords
- TSC, mechanistic target of rapamycin, miRNA, migration, neurodevelopmental disorder,
- MeSH
- Astrocytes metabolism MeSH
- Child MeSH
- Adult MeSH
- Infant MeSH
- Humans MeSH
- MicroRNAs genetics metabolism MeSH
- Adolescent MeSH
- Young Adult MeSH
- Brain growth & development pathology MeSH
- Cerebral Cortex pathology MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Neurons pathology MeSH
- Child, Preschool MeSH
- Signal Transduction genetics MeSH
- Tuberous Sclerosis complications genetics pathology MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Mice MeSH
- Child, Preschool MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- MicroRNAs MeSH
- MIRN34 microRNA, human MeSH Browser
- MIRN34a microRNA, mouse MeSH Browser
AIMS: Tuberous sclerosis complex (TSC) is a genetic disorder associated with dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1) signalling pathway. Neurodevelopmental disorders, frequently present in TSC, are linked to cortical tubers in the brain. We previously reported microRNA-34a (miR-34a) among the most upregulated miRs in tubers. Here, we characterised miR-34a expression in tubers with the focus on the early brain development and assessed the regulation of mTORC1 pathway and corticogenesis by miR-34a. METHODS: We analysed the expression of miR-34a in resected cortical tubers (n = 37) compared with autopsy-derived control tissue (n = 27). The effect of miR-34a overexpression on corticogenesis was assessed in mice at E18. The regulation of the mTORC1 pathway and the expression of the bioinformatically predicted target genes were assessed in primary astrocyte cultures from three patients with TSC and in SH-SY5Y cells following miR-34a transfection. RESULTS: The peak of miR-34a overexpression in tubers was observed during infancy, concomitant with the presence of pathological markers, particularly in giant cells and dysmorphic neurons. miR-34a was also strongly expressed in foetal TSC cortex. Overexpression of miR-34a in mouse embryos decreased the percentage of cells migrated to the cortical plate. The transfection of miR-34a mimic in TSC astrocytes negatively regulated mTORC1 and decreased the expression of the target genes RAS related (RRAS) and NOTCH1. CONCLUSIONS: MicroRNA-34a is most highly overexpressed in tubers during foetal and early postnatal brain development. miR-34a can negatively regulate mTORC1; however, it may also contribute to abnormal corticogenesis in TSC.
Brigham and Women's Hospital Harvard Medical School Boston MA USA
Chalfont Centre for Epilepsy Chalfont St Peter UK
Child Neurology and Psychiatry Unit Systems Medicine Department Tor Vergata University Rome Italy
Department of Child Neurology Medical University of Warsaw Warsaw Poland
Department of Clinical and Experimental Epilepsy University College London London UK
Department of Neuroimmunology Netherlands Institute for Neuroscience Amsterdam The Netherlands
Department of Neurology and Epileptology The Children's Memorial Health Institute Warsaw Poland
Department of Neurology University of Maryland School of Medicine Baltimore MD USA
Department of Paediatric Neurology University Medical Center Utrecht Utrecht The Netherlands
Department of Pathology University Medical Center Utrecht Utrecht The Netherlands
Department of Pediatrics Medical University Vienna Vienna Austria
Institute of Neurology Medical University Vienna Vienna Austria
Pediatric Neurology Unit Universitair Ziekenhuis Brussel Brussels Belgium
SoVarGen Inc Daejeon Republic of Korea
Stichting Epilepsie Instellingen Nederland Heemstede The Netherlands
See more in PubMed
Curatolo P, Moavero R, van Scheppingen J, Aronica E. mTOR dysregulation and tuberous sclerosis‐related epilepsy. Expert Rev Neurother. 2018;18(3):185‐201. PubMed
Crino PB. Evolving neurobiology of tuberous sclerosis complex. Acta Neuropathol. 2013;125(3):317‐332. PubMed
Mühlebner A, van Scheppingen J, Hulshof HM, et al. Novel histopathological patterns in cortical tubers of epilepsy surgery patients with tuberous sclerosis complex. PLoS One. 2016;11(6):e0157396. PubMed PMC
van Slegtenhorst M, de Hoogt R, Hermans C, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805‐808. PubMed
European Chromosome 16 Tuberous Sclerosis Consortium . Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. 1993;75(7):1305‐1315. PubMed
Crino PB. mTOR signaling in epilepsy: insights from malformations of cortical development. Cold Spring Harb Perspect Med. 2015;5(4):a022442. PubMed PMC
Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168(6):960‐976. PubMed PMC
Lipton JO, Sahin M. The neurology of mTOR. Neuron. 2014;84(2):275‐291. PubMed PMC
Curatolo P, Nabbout R, Lagae L, et al. Management of epilepsy associated with tuberous sclerosis complex: updated clinical recommendations. Eur J Paediatr Neurol. 2018;22(5):738‐748. PubMed
Bolton PF. Neuroepileptic correlates of autistic symptomatology in tuberous sclerosis. Ment Retard Dev Disabil Res Rev. 2004;10(2):126‐131. PubMed
Chu‐Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele EA. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia. 2010;51(7):1236‐1241. PubMed PMC
Jansen FE, Vincken KL, Algra A, et al. Cognitive impairment in tuberous sclerosis complex is a multifactorial condition. Neurology. 2008;70(12):916‐923. PubMed
de Vries PJ, Belousova E, Benedik MP, et al. TSC‐associated neuropsychiatric disorders (TAND): findings from the TOSCA natural history study. Orphanet J Rare Dis. 2018;13(1):157. PubMed PMC
Boer K, Crino PB, Gorter JA, et al. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol. 2010;20(4):704‐719. PubMed PMC
Mills JD, Iyer AM, van Scheppingen J, et al. Coding and small non‐coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment. Sci Rep. 2017;7(1):8089. PubMed PMC
Bartel DP. Metazoan microRNAs. Cell. 2018;173(1):20‐51. PubMed PMC
Rajman M, Schratt G. MicroRNAs in neural development: from master regulators to fine‐tuners. Development. 2017;144(13):2310‐2322. PubMed
Follert P, Cremer H, Beclin C. MicroRNAs in brain development and function: a matter of flexibility and stability. Front Mol Neurosci. 2014;7:5. PubMed PMC
Mehler MF, Mattick JS. Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev. 2007;87(3):799‐823. PubMed
Agostini M, Tucci P, Killick R, et al. Neuronal differentiation by TAp73 is mediated by microRNA‐34a regulation of synaptic protein targets. Proc Natl Acad Sci USA. 2011;108(52):21093‐21098. PubMed PMC
Aranha MM, Santos DM, Sola S, Steer CJ, Rodrigues CM. miR‐34a regulates mouse neural stem cell differentiation. PLoS One. 2011;6(8):e21396. PubMed PMC
Prabowo AS, Anink JJ, Lammens M, et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol. 2013;23(1):45‐59. PubMed PMC
Bordarier C, Lellouch‐Tubiana A, Robain O. Cardiac rhabdomyoma and tuberous sclerosis in three fetuses: a neuropathological study. Brain Dev. 1994;16(6):467‐471. PubMed
Park S‐H, Pepkowitz SH, Kerfoot C, et al. Tuberous sclerosis in a 20‐week gestation fetus: immunohistochemical study. Acta Neuropathol. 1997;94(2):180‐186. PubMed
Northrup H, Krueger DA, International Tuberous Sclerosis Complex Consensus Group . Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol. 2013;49(4):243‐254. PubMed PMC
Lim JS, Kim W‐I, Kang H‐C, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med. 2015;21(4):395‐400. PubMed
Koh HY, Kim SH, Jang J, et al. BRAF somatic mutation contributes to intrinsic epileptogenicity in pediatric brain tumors. Nat Med. 2018;24(11):1662‐1668. PubMed
Korotkov A, Puhakka N, Gupta SD, et al. Increased expression of miR142 and miR155 in glial and immune cells after traumatic brain injury may contribute to neuroinflammation via astrocyte activation. Brain Pathol. 2020;30(5):897–912. PubMed PMC
Ruijter JM, Ramakers C, Hoogaars WMH, et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37(6):e45. PubMed PMC
Korotkov A, Broekaart DWM, Van Scheppingen J, et al. Increased expression of matrix metalloproteinase 3 can be attenuated by inhibition of microRNA‐155 in cultured human astrocytes. J Neuroinflammation. 2018;15(1):211. PubMed PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671‐675. PubMed PMC
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005. PubMed PMC
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein‐protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607‐D613. PubMed PMC
Bongaarts A, van Scheppingen J, Korotkov A, et al. The coding and non‐coding transcriptional landscape of subependymal giant cell astrocytomas. Brain. 2020;143(1):131‐149. PubMed PMC
Rokavec M, Li H, Jiang L, Hermeking H. The p53/miR‐34 axis in development and disease. J Mol Cell Biol. 2014;6(3):214‐230. PubMed
Somel M, Guo S, Fu N, et al. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res. 2010;20(9):1207‐1218. PubMed PMC
Dombkowski AA, Batista CE, Cukovic D, et al. Cortical tubers: windows into dysregulation of epilepsy risk and synaptic signaling genes by microRNAs. Cereb Cortex. 2016;26(3):1059‐1071. PubMed PMC
Aranha MM, Santos DM, Xavier JM, et al. Apoptosis‐associated microRNAs are modulated in mouse, rat and human neural differentiation. BMC Genom. 2010;11:514. PubMed PMC
Mollinari C, Racaniello M, Berry A, et al. miR‐34a regulates cell proliferation, morphology and function of newborn neurons resulting in improved behavioural outcomes. Cell Death Dis. 2015;6:e1622. PubMed PMC
Fineberg SK, Datta P, Stein CS, Davidson BL. MiR‐34a represses Numbl in murine neural progenitor cells and antagonizes neuronal differentiation. PLoS One. 2012;7(6):e38562. PubMed PMC
Morgado AL, Xavier JM, Dionísio PA, et al. MicroRNA‐34a modulates neural stem cell differentiation by regulating expression of synaptic and autophagic proteins. Mol Neurobiol. 2015;51(3):1168‐1183. PubMed
Orlova KA, Crino PB. The tuberous sclerosis complex. Ann N Y Acad Sci. 2010;1184:87‐105. PubMed PMC
Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR‐34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26(5):745‐752. PubMed PMC
Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor‐suppressive miR‐34a induces senescence‐like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007;104(39):15472‐15477. PubMed PMC
He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447(7148):1130‐1134. PubMed PMC
Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR‐34a is a p53 target that induces apoptosis and G1‐arrest. Cell Cycle. 2007;6(13):1586‐1593. PubMed
Raver‐Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of miR‐34a contributes to p53‐mediated apoptosis. Mol Cell. 2007;26(5):731‐743. PubMed
Lee C‐H, Inoki K, Karbowniczek M, et al. Constitutive mTOR activation in TSC mutants sensitizes cells to energy starvation and genomic damage via p53. EMBO J. 2007;26(23):4812‐4823. PubMed PMC
Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008;134(3):451‐460. PubMed PMC
Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 2005;102(23):8204‐8209. PubMed PMC
Armstrong LC, Westlake G, Snow JP, et al. Heterozygous loss of TSC2 alters p53 signaling and human stem cell reprogramming. Hum Mol Genet. 2017;26(23):4629‐4641. PubMed PMC
Slabakova E, Culig Z, Remsik J, Soucek K. Alternative mechanisms of miR‐34a regulation in cancer. Cell Death Dis. 2017;8(10):e3100. PubMed PMC
Maldonado M, Baybis M, Newman D, et al. Expression of ICAM‐1, TNF‐alpha, NF kappa B, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol Dis. 2003;14(2):279‐290. PubMed
Martin KR, Zhou W, Bowman MJ, et al. The genomic landscape of tuberous sclerosis complex. Nat Commun. 2017;8:15816. PubMed PMC
Glenn OA, Barkovich AJ. Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, part 1. AJNR Am J Neuroradiol. 2006;27(8):1604‐1611. PubMed PMC
Chen CP, Su YN, Hung CC, Shih JC, Wang W. Novel mutation in the TSC2 gene associated with prenatally diagnosed cardiac rhabdomyomas and cerebral tuberous sclerosis. J Formos Med Assoc. 2006;105(7):599‐603. PubMed
Saada J, Hadj Rabia S, Fermont L, et al. Prenatal diagnosis of cardiac rhabdomyomas: incidence of associated cerebral lesions of tuberous sclerosis complex. Ultrasound Obstet Gynecol. 2009;34(2):155‐159. PubMed
Wortmann SB, Reimer A, Creemers JW, Mullaart RA. Prenatal diagnosis of cerebral lesions in Tuberous sclerosis complex (TSC). Case report and review of the literature. Eur J Paediatr Neurol. 2008;12(2):123‐126. PubMed
Mizuguchi M, Takashima S. Neuropathology of tuberous sclerosis. Brain Dev. 2001;23(7):508‐515. PubMed
Keely PJ, Rusyn EV, Cox AD, Parise LV. R‐Ras signals through specific integrin alpha cytoplasmic domains to promote migration and invasion of breast epithelial cells. J Cell Biol. 1999;145(5):1077‐1088. PubMed PMC
Wozniak MA, Kwong L, Chodniewicz D, Klemke RL, Keely PJ. R‐Ras controls membrane protrusion and cell migration through the spatial regulation of Rac and Rho. Mol Biol Cell. 2005;16(1):84‐96. PubMed PMC
Pang RTK, Leung CON, Ye T‐M, et al. MicroRNA‐34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells. Carcinogenesis. 2010;31:1037‐1044. PubMed
Ables JL, Breunig JJ, Eisch AJ, Rakic P. Not(ch) just development: notch signalling in the adult brain. Nat Rev Neurosci. 2011;12(5):269‐283. PubMed PMC
Yoon K, Gaiano N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci. 2005;8(6):709‐715. PubMed
Chang SJ, Weng SL, Hsieh JY, Wang TY, Chang MD, Wang HW. MicroRNA‐34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells. BMC Med Genomics. 2011;4:65. PubMed PMC
Soni K, Gupta S, Gokhale SS, et al. Detection and knockdown of microRNA‐34a using thioacetamido nucleic acid. Nucleic Acid Ther. 2013;23(3):195‐202. PubMed
Wu J, Bao J, Kim M, et al. Two miRNA clusters, miR‐34b/c and miR‐449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci USA. 2014;111(28):E2851‐E2857. PubMed PMC
Bernardo BC, Gao X‐M, Winbanks CE, et al. Therapeutic inhibition of the miR‐34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci USA. 2012;109(43):17615‐17620. PubMed PMC
Bernardo BC, Gregorevic P, Ritchie RH, McMullen JR. Generation of microRNA‐34 sponges and tough decoys for the heart: developments and challenges. Front Pharmacol. 2018;9:1090. PubMed PMC
Meng L, Liu C, Lü J, et al. Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells. Nat Commun. 2017;8:13964. PubMed PMC
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203‐222. PubMed
Kumar B, Yadav A, Lang J, Teknos TN, Kumar P. Dysregulation of microRNA‐34a expression in head and neck squamous cell carcinoma promotes tumor growth and tumor angiogenesis. PLoS One. 2012;7(5):e37601. PubMed PMC
French JA, Lawson JA, Yapici Z, et al. Adjunctive everolimus therapy for treatment‐resistant focal‐onset seizures associated with tuberous sclerosis (EXIST‐3): a phase 3, randomised, double‐blind, placebo‐controlled study. Lancet. 2016;388(10056):2153‐2163. PubMed
Feliciano DM. The neurodevelopmental pathogenesis of Tuberous Sclerosis Complex (TSC). Front Neuroanat. 2020;14:39. PubMed PMC