The coding and non-coding transcriptional landscape of subependymal giant cell astrocytomas

. 2020 Jan 01 ; 143 (1) : 131-149.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31834371

Tuberous sclerosis complex (TSC) is an autosomal dominantly inherited neurocutaneous disorder caused by inactivating mutations in TSC1 or TSC2, key regulators of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. In the CNS, TSC is characterized by cortical tubers, subependymal nodules and subependymal giant cell astrocytomas (SEGAs). SEGAs may lead to impaired circulation of CSF resulting in hydrocephalus and raised intracranial pressure in patients with TSC. Currently, surgical resection and mTORC1 inhibitors are the recommended treatment options for patients with SEGA. In the present study, high-throughput RNA-sequencing (SEGAs n = 19, periventricular control n = 8) was used in combination with computational approaches to unravel the complexity of SEGA development. We identified 9400 mRNAs and 94 microRNAs differentially expressed in SEGAs compared to control tissue. The SEGA transcriptome profile was enriched for the mitogen-activated protein kinase (MAPK) pathway, a major regulator of cell proliferation and survival. Analysis at the protein level confirmed that extracellular signal-regulated kinase (ERK) is activated in SEGAs. Subsequently, the inhibition of ERK independently of mTORC1 blockade decreased efficiently the proliferation of primary patient-derived SEGA cultures. Furthermore, we found that LAMTOR1, LAMTOR2, LAMTOR3, LAMTOR4 and LAMTOR5 were overexpressed at both gene and protein levels in SEGA compared to control tissue. Taken together LAMTOR1-5 can form a complex, known as the 'Ragulator' complex, which is known to activate both mTORC1 and MAPK/ERK pathways. Overall, this study shows that the MAPK/ERK pathway could be used as a target for treatment independent of, or in combination with mTORC1 inhibitors for TSC patients. Moreover, our study provides initial evidence of a possible link between the constitutive activated mTORC1 pathway and a secondary driver pathway of tumour growth.

Center for Experimental and Molecular Medicine and Department of Clinical Epidemiology Biostatistics and Bioinformatics Amsterdam UMC University of Amsterdam Amsterdam The Netherlands

Department of Child Neurology Medical University of Warsaw Warsaw Poland

Department of Neurology and Epileptology Children's Memorial Health Institute Warsaw Poland

Department of Neuropathology University Hospital Erlangen Erlangen Germany

Department of Neurosurgery Anna Meyer Children's Hospital Florence Italy

Department of Paediatric Neurology Charles University 2nd Faculty of Medicine Motol University Hospital Prague Czech Republic

Department of Pathology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands

Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands

Department of Pathology and Molecular Medicine Charles University 2nd Faculty of Medicine Motol University Hospital Prague Czech Republic

Department of Pathology Children's Memorial Health Institute Warsaw Poland

Department of Pathology University Medical Center Utrecht Utrecht The Netherlands

Department of Pediatric Neurology University Medical Center Utrecht Utrecht The Netherlands

Department of Pediatric Oncology Emma Children's Hospital Amsterdam UMC University of Amsterdam Amsterdam The Netherlands

Department of Pediatrics Medical University of Vienna Vienna Austria

Institute of Neurology Medical University of Vienna Vienna Austria

Pathology Unit Anna Meyer Children's Hospital Florence Italy

Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands

Stichting Epilepsie Instellingen Nederland The Netherlands

Erratum v

PubMed

Zobrazit více v PubMed

Adriaensen ME, Schaefer-Prokop CM, Stijnen T, Duyndam DA, Zonnenberg BA, Prokop M. Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol 2009; 16: 691–6. PubMed

Albert L, Karsy M, Murali R, Jhanwar-Uniyal M. Inhibition of mTOR activates the MAPK pathway in Glioblastoma multiforme. Cancer Genomics Proteomics 2009; 6: 255–61. PubMed

Ames HM, Yuan M, Vizcaino MA, Yu W, Rodriguez FJ. MicroRNA profiling of low-grade glial and glioneuronal tumors shows an independent role for cluster 14q32.31 member miR-487b. Mod Pathol 2017; 30: 204–16. PubMed PMC

Aronica E, Becker AJ, Spreafico R. Malformations of cortical development. Brain Pathol 2012; 22: 380–401. PubMed PMC

Aronica E, Crino PB. Epilepsy related to developmental tumors and malformations of cortical development. Neurotherapeutics 2014; 11: 251–68. PubMed PMC

Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012; 150: 1196–208. PubMed PMC

Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM, et al.Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 2008; 358: 140–51. PubMed PMC

Boer K, Crino PB, Gorter JA, Nellist M, Jansen FE, Spliet WG, et al.Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol 2010; 20: 704–19. PubMed PMC

Boer K, Jansen F, Nellist M, Redeker S, van den Ouweland AM, Spliet WG, et al.Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Epilepsy Res 2008; 78: 7–21. PubMed

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30: 2114–20. PubMed PMC

Bongaarts A, Giannikou K, Reinten RJ, Anink JJ, Mills JD, Jansen FE, et al.Subependymal giant cell astrocytomas in Tuberous sclerosis complex have consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations. Oncotarget 2017; 8: 95516–29. PubMed PMC

Bongaarts A, Prabowo AS, Arena A, Anink JJ, Reinten RJ,, Jansen FE, et al.MicroRNA519d and microRNA4758 can identify gangliogliomas from dysembryoplastic neuroepithelial tumours and astrocytomas. Oncotarget 2018; 9: 28103–15. PubMed PMC

Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, et al.Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118: 3065–74. PubMed PMC

Chan JA, Zhang H, Roberts PS, Jozwiak S, Wieslawa G, Lewin-Kowalik J, et al.Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 2004; 63: 1236–42. PubMed

Cheng Y, Tian H. Current development status of MEK inhibitors. Molecules 2017; 22: 1551. PubMed PMC

Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al.Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 2011; 39: D691–7. PubMed PMC

Cuccia V, Zuccaro G, Sosa F, Monges J, Lubienieky F, Taratuto AL. Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv Syst 2003; 19: 232–43. PubMed

de Araujo Herculano B, Vandresen-Filho S, Martins WC, Boeck CR, Tasca CI. NMDA preconditioning protects against quinolinic acid-induced seizures via PKA, PI3K and MAPK/ERK signaling pathways. Behav Brain Res 2011; 219: 92–7. PubMed

de Araujo MEG, Naschberger A, Furnrohr BG, Stasyk T, Dunzendorfer-Matt T, Lechner S, et al.Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling. Science 2017; 358: 377–81. PubMed

de Ribaupierre S, Dorfmuller G, Bulteau C, Fohlen M, Pinard JM, Chiron C, et al.Subependymal giant-cell astrocytomas in pediatric tuberous sclerosis disease: when should we operate? Neurosurgery 2007; 60: 83–9; discussion 9–90. PubMed

Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, et al.TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012; 47: 535–46. PubMed PMC

DiMario FJ., Jr. Brain abnormalities in tuberous sclerosis complex. J Child Neurol 2004; 19: 650–7. PubMed

Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res 2019; 18: 623–32. PubMed PMC

Dweep H, Gretz N, Sticht C. miRWalk database for miRNA-target interactions. Methods Mol Biol 2014; 1182: 289–305. PubMed

Dweep H, Sticht C, Pandey P, Gretz N. miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 2011; 44: 839–47. PubMed

European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993; 75: 1305–15. PubMed

Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al.The reactome pathway knowledgebase. Nucleic Acids Res 2018; 46: D649–55. PubMed PMC

Filipek PA, de Araujo MEG, Vogel GF, De Smet CH, Eberharter D, Rebsamen M, et al.LAMTOR/Ragulator is a negative regulator of Arl8b- and BORC-dependent late endosomal positioning. J Cell Biol 2017; 216: 4199–215. PubMed PMC

Franz DN, Agricola K, Mays M, Tudor C, Care MM, Holland-Bouley K, et al.Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann Neurol 2015; 78: 929–38. PubMed PMC

Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R, et al.Everolimus for subependymal giant cell astrocytoma in patients with tuberous sclerosis complex: 2-year open-label extension of the randomised EXIST-1 study. Lancet Oncol 2014; 15: 1513–20. PubMed

Franz DN, Belousova E, Sparagana S, Bebin EM, Frost M, Kuperman R, et al.Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2013; 381: 125–32. PubMed

Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G, et al.Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 2006; 59: 490–8. PubMed

Fujiwara S, Takaki T, Hikita T, Nishio S. Subependymal giant-cell astrocytoma associated with tuberous sclerosis. Do subependymal nodules grow? Childs Nerv Syst 1989; 5: 43–4. PubMed

Glazova MV, Nikitina LS, Hudik KA, Kirillova OD, Dorofeeva NA, Korotkov AA, et al.Inhibition of ERK1/2 signaling prevents epileptiform behavior in rats prone to audiogenic seizures. J Neurochem 2015; 132: 218–29. PubMed

Goh S, Butler W, Thiele EA. Subependymal giant cell tumors in tuberous sclerosis complex. Neurology 2004; 63: 1457–61. PubMed

Gorter JA, Iyer A, White I, Colzi A, van Vliet EA, Sisodiya S, et al.Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol Dis 2014; 62: 508–20. PubMed

Govindarajan B, Mizesko MC, Miller MS, Onda H, Nunnelley M, Casper K, et al.Tuberous sclerosis-associated neoplasms express activated p42/44 mitogen-activated protein (MAP) kinase, and inhibition of MAP kinase signaling results in decreased in vivo tumor growth. Clin Cancer Res 2003; 9: 3469–75. PubMed

Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res 2008; 36: D154–8. PubMed PMC

Han S, Santos TM, Puga A, Roy J, Thiele EA, McCollin M, et al.Phosphorylation of tuberin as a novel mechanism for somatic inactivation of the tuberous sclerosis complex proteins in brain lesions. Cancer Res 2004; 64: 812–6. PubMed

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al.GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012; 22: 1760–74. PubMed PMC

Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009a; 37: 1–13. PubMed PMC

Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009b; 4: 44–57. PubMed

Inoki K,, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17: 1829–34. PubMed PMC

Jozwiak S, Mandera M, Mlynarski W. Natural history and current treatment options for subependymal giant cell astrocytoma in tuberous sclerosis complex. Semin Pediatr Neurol 2015; 22: 274–81. PubMed

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013; 14: R36. PubMed PMC

Kingswood JC, d'Augeres GB, Belousova E, Ferreira JC, Carter T, Castellana R, et al.TuberOus SClerosis registry to increase disease awareness (TOSCA)-baseline data on 2093 patients. Orphanet J Rare Dis 2017; 12: 2. PubMed PMC

Korotkov A, Broekaart DWM, van Scheppingen J, Anink JJ, Baayen JC, Idema S, et al.Increased expression of matrix metalloproteinase 3 can be attenuated by inhibition of microRNA-155 in cultured human astrocytes. J Neuroinflamm 2018; 15: 211. PubMed PMC

Kothare SV, Singh K, Chalifoux JR, Staley BA, Weiner HL, Menzer K, et al.Severity of manifestations in tuberous sclerosis complex in relation to genotype. Epilepsia 2014; 55: 1025–9. PubMed

Kotulska K, Borkowska J, Roszkowski M, Mandera M, Daszkiewicz P, Drabik K, et al.Surgical treatment of subependymal giant cell astrocytoma in tuberous sclerosis complex patients. Pediatr Neurol 2014; 50: 307–12. PubMed

Kotulska K, Chmielewski D, Borkowska J, Jurkiewicz E, Kuczynski D, Kmiec T, et al.Long-term effect of everolimus on epilepsy and growth in children under 3 years of age treated for subependymal giant cell astrocytoma associated with tuberous sclerosis complex. Eur J Paediatr Neurol 2013; 17: 479–85. PubMed

Krueger DA, Care MM, Agricola K, Tudor C, Mays M, Franz DN. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology 2013; 80: 574–80. PubMed PMC

Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, et al.Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 2010; 363: 1801–11. PubMed

Krueger DA, Wilfong AA, Mays M, Talley CM, Agricola K, Tudor C, et al.Long-term treatment of epilepsy with everolimus in tuberous sclerosis. Neurology 2016; 87: 2408–15. PubMed PMC

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014; 30: 923–30. PubMed

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al.The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131: 803–20. PubMed

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15: 550. PubMed PMC

Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005; 121: 179–93. PubMed

Ma L, Teruya-Feldstein J, Bonner P, Bernardi R, Franz DN, Witte D, et al.Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res 2007; 67: 7106–12. PubMed

Martin KR, Zhou W, Bowman MJ, Shih J, Au KS, Dittenhafer-Reed KE, et al.The genomic landscape of tuberous sclerosis complex. Nat Commun 2017; 8: 15816. PubMed PMC

Martins F, de Oliveira MA, Wang Q, Sonis S, Gallottini M, George S, et al.A review of oral toxicity associated with mTOR inhibitor therapy in cancer patients. Oral Oncol 2013; 49: 293–8. PubMed

McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K, et al.Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 2011; 364: 1595–606. PubMed PMC

Mi R, Ma J, Zhang D, Li L, Zhang H. Efficacy of combined inhibition of mTOR and ERK/MAPK pathways in treating a tuberous sclerosis complex cell model. J Genet Genomics 2009; 36: 355–61. PubMed

Mills JD, Iyer AM, van Scheppingen J, Bongaarts A, Anink JJ,, Janssen B, et al.Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment. Sci Rep 2017; 7: 8089. PubMed PMC

Mizuguchi M, Takashima S. Neuropathology of tuberous sclerosis. Brain Dev 2001; 23: 508–15. PubMed

Morimoto K, Mogami H. Sequential CT study of subependymal giant-cell astrocytoma associated with tuberous sclerosis. Case report. J Neurosurg 1986; 65: 874–7. PubMed

Nabbout R, Santos M, Rolland Y, Delalande O, Dulac O, Chiron C. Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis. J Neurol Neurosurg Psychiatry 1999; 66: 370–5. PubMed PMC

Nada S, Mori S, Takahashi Y, Okada M. p18/LAMTOR1: a late endosome/lysosome-specific anchor protein for the mTORC1/MAPK signaling pathway. Methods Enzymol 2014; 535: 249–63. PubMed

Nateri AS, Raivich G, Gebhardt C, Da Costa C, Naumann H, Vreugdenhil M, et al.ERK activation causes epilepsy by stimulating NMDA receptor activity. EMBO J 2007; 26: 4891–901. PubMed PMC

Northrup H, Krueger DA, International Tuberous Sclerosis Complex Consensus G. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 2013; 49: 243–54. PubMed PMC

Pernice HF, Schieweck R, Kiebler MA, Popper B. mTOR and MAPK: from localized translation control to epilepsy. BMC Neurosci 2016; 17: 73. PubMed PMC

Prabowo AS, Anink JJ, Lammens M, Nellist M, van den Ouweland AM, Adle-Biassette H, et al.Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol 2013; 23: 45–59. PubMed PMC

Ramakers C, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 2003; 339: 62–6. PubMed

Rebsamen M, Pochini L, Stasyk T, de Araujo ME, Galluccio M, Kandasamy RK, et al.SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015; 519: 477–81. PubMed PMC

Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, et al.Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 2009; 37: e45. PubMed PMC

Sadowski K, Kotulska K, Jozwiak S. Management of side effects of mTOR inhibitors in tuberous sclerosis patients. Pharmacol Rep 2016; 68: 536–42. PubMed

Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290–303. PubMed PMC

Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, et al.The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320: 1496–501. PubMed PMC

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498–504. PubMed PMC

Shao Y, Wang C, Hong Z, Chen Y. Inhibition of p38 mitogen-activated protein kinase signaling reduces multidrug transporter activity and anti-epileptic drug resistance in refractory epileptic rats. J Neurochem 2016; 136: 1096–105. PubMed

Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, et al.BioMart–biological queries made easy. BMC Genomics 2009; 10: 22. PubMed PMC

Teis D, Wunderlich W, Huber LA. Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev Cell 2002; 3: 803–14. PubMed

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al.Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7: 562–78. PubMed PMC

Tyburczy ME, Kotulska K, Pokarowski P, Mieczkowski J, Kucharska J, Grajkowska W, et al.Novel proteins regulated by mTOR in subependymal giant cell astrocytomas of patients with tuberous sclerosis complex and new therapeutic implications. Am J Pathol 2010; 176: 1878–90. PubMed PMC

van Scheppingen J, Iyer AM, Prabowo AS, Muhlebner A, Anink JJ, Scholl T, et al.Expression of microRNAs miR21, miR146a, and miR155 in tuberous sclerosis complex cortical tubers and their regulation in human astrocytes and SEGA-derived cell cultures. Glia 2016; 64: 1066–82. PubMed

van Scheppingen J, Mills JD, Zimmer TS, Broekaart DWM, Iori V, Bongaarts A, et al.miR147b: A novel key regulator of interleukin 1 beta-mediated inflammation in human astrocytes. Glia 2018; 66: 1082–97. PubMed

van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, et al.Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997; 277: 805–8. PubMed

Varemo L, Nielsen J, Nookaew I. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res 2013; 41: 4378–91. PubMed PMC

Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015; 347: 188–94. PubMed PMC

Wunderlich W, Fialka I, Teis D, Alpi A, Pfeifer A, Parton RG, et al.A novel 14-kilodalton protein interacts with the mitogen-activated protein kinase scaffold mp1 on a late endosomal/lysosomal compartment. J Cell Biol 2001; 152: 765–76. PubMed PMC

Zhang B, Zou J, Rensing NR, Yang M, Wong M. Inflammatory mechanisms contribute to the neurological manifestations of tuberous sclerosis complex. Neurobiol Dis 2015; 80: 70–9. PubMed PMC

Zurolo E, Iyer A, Maroso M, Carbonell C, Anink JJ, Ravizza T, et al.Activation of toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain 2011; 134: 1015–32. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...