miRNAs and isomiRs: Serum-Based Biomarkers for the Development of Intellectual Disability and Autism Spectrum Disorder in Tuberous Sclerosis Complex
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
602391
Framework Programme FP7/2007-2013
STRATEGMED3/306,306/4/2016
EPIMARKER
LSHM17051-SGF
EPI-BIO-MIR
952455
EU H2020-Twinning project EpiEpiNet
PubMed
36009385
PubMed Central
PMC9405248
DOI
10.3390/biomedicines10081838
PII: biomedicines10081838
Knihovny.cz E-zdroje
- Klíčová slova
- autism spectrum disorder, biomarkers, epilepsy, intellectual disability, serum, tuberous sclerosis complex,
- Publikační typ
- časopisecké články MeSH
Tuberous sclerosis complex (TSC) is a rare multi-system genetic disorder characterized by a high incidence of epilepsy and neuropsychiatric manifestations known as tuberous-sclerosis-associated neuropsychiatric disorders (TANDs), including autism spectrum disorder (ASD) and intellectual disability (ID). MicroRNAs (miRNAs) are small regulatory non-coding RNAs that regulate the expression of more than 60% of all protein-coding genes in humans and have been reported to be dysregulated in several diseases, including TSC. In the current study, RNA sequencing analysis was performed to define the miRNA and isoform (isomiR) expression patterns in serum. A Receiver Operating Characteristic (ROC) curve analysis was used to identify circulating molecular biomarkers, miRNAs, and isomiRs, able to discriminate the development of neuropsychiatric comorbidity, either ASD, ID, or ASD + ID, in patients with TSC. Part of our bioinformatics predictions was verified with RT-qPCR performed on RNA isolated from patients' serum. Our results support the notion that circulating miRNAs and isomiRs have the potential to aid standard clinical testing in the early risk assessment of ASD and ID development in TSC patients.
Chalfont Centre for Epilepsy Chalfont St Peter SL9 0RJ UK
Child Neurology Unit Neuroscience Department Bambino Gesù Children's Hospital IRCCS 00165 Rome Italy
Department of Child Neurology Medical University of Warsaw 02 097 Warsaw Poland
Department of Experimental Medicine Sapienza University of Rome 00161 Rome Italy
Department of Medicine Brigham and Women's Hospital Boston MA 02115 USA
Department of Neuropediatrics Charité University Medicine Berlin 13353 Berlin Germany
Department of Translational Neurosciences University of Antwerp 2000 Antwerp Belgium
Diagnose und Behandlungszentrum für Kinder Vivantes Klinikum Neukölln 12351 Berlin Germany
Faculty of Medicine The University of Queensland Herston QLD 4029 Australia
Internal Medicine Erasmus MC 3015 GD Rotterdam The Netherlands
International Institute of Molecular and Cell Biology 02 109 Warsaw Poland
Motol University Hospital Charles University 15000 Prague Czech Republic
Neurosciences Unit Queensland Children's Hospital South Brisbane QLD 4101 Australia
Zobrazit více v PubMed
Northrup H., Aronow M.E., Bebin E.M., Bissler J., Darling T.N., de Vries P.J., Frost M.D., Fuchs Z., Gosnell E.S., Gupta N., et al. Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations. Pediatr. Neurol. 2021;123:50–66. doi: 10.1016/j.pediatrneurol.2021.07.011. PubMed DOI
Sancak O., Nellist M., Goedbloed M., Elfferich P., Wouters C., Maat-Kievit A., Zonnenberg B., Verhoef S., Halley D., van den Ouweland A. Mutational Analysis of the TSC1 and TSC2 Genes in a Diagnostic Setting: Genotype--Phenotype Correlations and Comparison of Diagnostic DNA Techniques in Tuberous Sclerosis Complex. Eur. J. Hum. Genet. EJHG. 2005;13:731–741. doi: 10.1038/sj.ejhg.5201402. PubMed DOI
Mühlebner A., Bongaarts A., Sarnat H.B., Scholl T., Aronica E. New Insights into a Spectrum of Developmental Malformations Related to MTOR Dysregulations: Challenges and Perspectives. J. Anat. 2019;235:521–542. doi: 10.1111/joa.12956. PubMed DOI PMC
Curatolo P., Moavero R., de Vries P.J. Neurological and Neuropsychiatric Aspects of Tuberous Sclerosis Complex. Lancet Neurol. 2015;14:733–745. doi: 10.1016/S1474-4422(15)00069-1. PubMed DOI
Capal J.K., Williams M.E., Pearson D.A., Kissinger R., Horn P.S., Murray D., Currans K., Kent B., Bebin M., Northrup H., et al. Profile of Autism Spectrum Disorder in Tuberous Sclerosis Complex: Results from a Longitudinal, Prospective, Multisite Study. Ann. Neurol. 2021;90:874–886. doi: 10.1002/ana.26249. PubMed DOI PMC
De Vries P.J., Leclezio L., Gardner-Lubbe S., Krueger D., Sahin M., Sparagana S., de Waele L., Jansen A. Multivariate Data Analysis Identifies Natural Clusters of Tuberous Sclerosis Complex Associated Neuropsychiatric Disorders (TAND) Orphanet J. Rare Dis. 2021;16:447. doi: 10.1186/s13023-021-02076-w. PubMed DOI PMC
de Vries P.J., Belousova E., Benedik M.P., Carter T., Cottin V., Curatolo P., D’Amato L., Beure d’Augères G., Ferreira J.C., Feucht M., et al. Natural Clusters of Tuberous Sclerosis Complex (TSC)-Associated Neuropsychiatric Disorders (TAND): New Findings from the TOSCA TAND Research Project. J. Neurodev. Disord. 2020;12:24. doi: 10.1186/s11689-020-09327-0. PubMed DOI PMC
Specchio N., Pietrafusa N., Trivisano M., Moavero R., De Palma L., Ferretti A., Vigevano F., Curatolo P. Autism and Epilepsy in Patients With Tuberous Sclerosis Complex. Front. Neurol. 2020;11:639. doi: 10.3389/fneur.2020.00639. PubMed DOI PMC
Gupta A., de Bruyn G., Tousseyn S., Krishnan B., Lagae L., Agarwal N., TSC Natural History Database Consortium Epilepsy and Neurodevelopmental Comorbidities in Tuberous Sclerosis Complex: A Natural History Study. Pediatr. Neurol. 2020;106:10–16. doi: 10.1016/j.pediatrneurol.2019.12.016. PubMed DOI
Bolton P.F., Park R.J., Higgins J.N.P., Griffiths P.D., Pickles A. Neuro-Epileptic Determinants of Autism Spectrum Disorders in Tuberous Sclerosis Complex. Brain J. Neurol. 2002;125:1247–1255. doi: 10.1093/brain/awf124. PubMed DOI
Smalley S.L. Autism and Tuberous Sclerosis. J. Autism Dev. Disord. 1998;28:407–414. doi: 10.1023/A:1026052421693. PubMed DOI
Ehninger D., de Vries P.J., Silva A.J. From MTOR to Cognition: Molecular and Cellular Mechanisms of Cognitive Impairments in Tuberous Sclerosis. J. Intellect. Disabil. Res. 2009;53:838–851. doi: 10.1111/j.1365-2788.2009.01208.x. PubMed DOI PMC
Napolioni V., Moavero R., Curatolo P. Recent Advances in Neurobiology of Tuberous Sclerosis Complex. Brain Dev. 2009;31:104–113. doi: 10.1016/j.braindev.2008.09.013. PubMed DOI
Bassetti D., Luhmann H.J., Kirischuk S. Effects of Mutations in TSC Genes on Neurodevelopment and Synaptic Transmission. Int. J. Mol. Sci. 2021;22:7273. doi: 10.3390/ijms22147273. PubMed DOI PMC
Moavero R., Kotulska K., Lagae L., Benvenuto A., Emberti Gialloreti L., Weschke B., Riney K., Feucht M., Krsek P., Nabbout R., et al. Is Autism Driven by Epilepsy in Infants with Tuberous Sclerosis Complex? Ann. Clin. Transl. Neurol. 2020;7:1371–1381. doi: 10.1002/acn3.51128. PubMed DOI PMC
World Health Organization. International Programme on Chemical Safety . Biomarkers and Risk Assessment: Concepts and Principles. World Health Organization; Geneva, Switzerland: 1993.
van Vliet E.A., Puhakka N., Mills J.D., Srivastava P.K., Johnson M.R., Roncon P., Das Gupta S., Karttunen J., Simonato M., Lukasiuk K., et al. Standardization Procedure for Plasma Biomarker Analysis in Rat Models of Epileptogenesis: Focus on Circulating MicroRNAs. Epilepsia. 2017;58:2013–2024. doi: 10.1111/epi.13915. PubMed DOI
Pitkänen A., Löscher W., Vezzani A., Becker A.J., Simonato M., Lukasiuk K., Gröhn O., Bankstahl J.P., Friedman A., Aronica E., et al. Advances in the Development of Biomarkers for Epilepsy. Lancet Neurol. 2016;15:843–856. doi: 10.1016/S1474-4422(16)00112-5. PubMed DOI
Pitkänen A., Henshall D.C., Cross J.H., Guerrini R., Jozwiak S., Kokaia M., Simonato M., Sisodiya S., Mifsud J. Advancing Research toward Faster Diagnosis, Better Treatment, and End of Stigma in Epilepsy. Epilepsia. 2019;60:1281–1292. doi: 10.1111/epi.16091. PubMed DOI
Stoicea N., Du A., Lakis D.C., Tipton C., Arias-Morales C.E., Bergese S.D. The MiRNA Journey from Theory to Practice as a CNS Biomarker. Front. Genet. 2016;7:11. doi: 10.3389/fgene.2016.00011. PubMed DOI PMC
Ha M., Kim V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014;15:509–524. doi: 10.1038/nrm3838. PubMed DOI
Broughton J.P., Lovci M.T., Huang J.L., Yeo G.W., Pasquinelli A.E. Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Mol. Cell. 2016;64:320–333. doi: 10.1016/j.molcel.2016.09.004. PubMed DOI PMC
Gebert L.F.R., MacRae I.J. Regulation of MicroRNA Function in Animals. Nat. Rev. Mol. Cell Biol. 2019;20:21–37. doi: 10.1038/s41580-018-0045-7. PubMed DOI PMC
Brennan G.P., Bauer S., Engel T., Jimenez-Mateos E.M., Del Gallo F., Hill T.D.M., Connolly N.M.C., Costard L.S., Neubert V., Salvetti B., et al. Genome-Wide MicroRNA Profiling of Plasma from Three Different Animal Models Identifies Biomarkers of Temporal Lobe Epilepsy. Neurobiol. Dis. 2020;144:105048. doi: 10.1016/j.nbd.2020.105048. PubMed DOI
Hu Z., Gao S., Lindberg D., Panja D., Wakabayashi Y., Li K., Kleinman J.E., Zhu J., Li Z. Temporal Dynamics of MiRNAs in Human DLPFC and Its Association with MiRNA Dysregulation in Schizophrenia. Transl. Psychiatry. 2019;9:196. doi: 10.1038/s41398-019-0538-y. PubMed DOI PMC
Jansen A.C., Jozwiak S., Lagae L., Kwiatkowski D., Jansen F.E., Aronica E., Kotulska K., Curatolo P. Long-Term, Prospective Study Evaluating Clinical and Molecular Biomarkers of Epileptogenesis in a Genetic Model of Epilepsy–Tuberous Sclerosis Complex. Impact. 2019;2019:6–9. doi: 10.21820/23987073.2019.4.6. DOI
Mills J.D., Iyer A.M., van Scheppingen J., Bongaarts A., Anink J.J., Janssen B., Zimmer T.S., Spliet W.G., van Rijen P.C., Jansen F.E., et al. Coding and Small Non-Coding Transcriptional Landscape of Tuberous Sclerosis Complex Cortical Tubers: Implications for Pathophysiology and Treatment. Sci. Rep. 2017;7:8089. doi: 10.1038/s41598-017-06145-8. PubMed DOI PMC
Raoof R., Bauer S., El Naggar H., Connolly N.M.C., Brennan G.P., Brindley E., Hill T., McArdle H., Spain E., Forster R.J., et al. Dual-Center, Dual-Platform MicroRNA Profiling Identifies Potential Plasma Biomarkers of Adult Temporal Lobe Epilepsy. EBioMedicine. 2018;38:127–141. doi: 10.1016/j.ebiom.2018.10.068. PubMed DOI PMC
Zhao D., Lin M., Chen J., Pedrosa E., Hrabovsky A., Fourcade H.M., Zheng D., Lachman H.M. MicroRNA Profiling of Neurons Generated Using Induced Pluripotent Stem Cells Derived from Patients with Schizophrenia and Schizoaffective Disorder, and 22q11.2 Del. PLoS ONE. 2015;10:e0132387. doi: 10.1371/journal.pone.0132387. PubMed DOI PMC
Lan C., Peng H., McGowan E.M., Hutvagner G., Li J. An IsomiR Expression Panel Based Novel Breast Cancer Classification Approach Using Improved Mutual Information. BMC Med. Genom. 2018;11:118. doi: 10.1186/s12920-018-0434-y. PubMed DOI PMC
Magee R., Telonis A.G., Cherlin T., Rigoutsos I., Londin E. Assessment of IsomiR Discrimination Using Commercial QPCR Methods. Non-Coding RNA. 2017;3:18. doi: 10.3390/ncrna3020018. PubMed DOI PMC
Schamberger A., Orbán T.I. 3’ IsomiR Species and DNA Contamination Influence Reliable Quantification of MicroRNAs by Stem-Loop Quantitative PCR. PLoS ONE. 2014;9:e106315. doi: 10.1371/journal.pone.0106315. PubMed DOI PMC
Telonis A.G., Magee R., Loher P., Chervoneva I., Londin E., Rigoutsos I. Knowledge about the Presence or Absence of MiRNA Isoforms (IsomiRs) Can Successfully Discriminate amongst 32 TCGA Cancer Types. Nucleic Acids Res. 2017;45:2973–2985. doi: 10.1093/nar/gkx082. PubMed DOI PMC
Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework-2001-Clinical Pharmacology & Therapeutics-Wiley Online Library. [(accessed on 6 April 2022)]. Available online: https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1067/mcp.2001.113989. PubMed DOI
Cocucci E., Racchetti G., Meldolesi J. Shedding Microvesicles: Artefacts No More. Trends Cell Biol. 2009;19:43–51. doi: 10.1016/j.tcb.2008.11.003. PubMed DOI
Ratajczak J., Wysoczynski M., Hayek F., Janowska-Wieczorek A., Ratajczak M.Z. Membrane-Derived Microvesicles: Important and Underappreciated Mediators of Cell-to-Cell Communication. Leukemia. 2006;20:1487–1495. doi: 10.1038/sj.leu.2404296. PubMed DOI
Simons M., Raposo G. Exosomes–Vesicular Carriers for Intercellular Communication. Curr. Opin. Cell Biol. 2009;21:575–581. doi: 10.1016/j.ceb.2009.03.007. PubMed DOI
Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs Are Transported in Plasma and Delivered to Recipient Cells by High-Density Lipoproteins. Nat. Cell Biol. 2011;13:423–433. doi: 10.1038/ncb2210. PubMed DOI PMC
Kos M.Z., Puppala S., Cruz D., Neary J.L., Kumar A., Dalan E., Li C., Nathanielsz P., Carless M.A. Blood-Based MiRNA Biomarkers as Correlates of Brain-Based MiRNA Expression. Front. Mol. Neurosci. 2022;15:89. doi: 10.3389/fnmol.2022.817290. PubMed DOI PMC
Kotulska K., Kwiatkowski D.J., Curatolo P., Weschke B., Riney K., Jansen F., Feucht M., Krsek P., Nabbout R., Jansen A.C., et al. Prevention of Epilepsy in Infants with Tuberous Sclerosis Complex in the EPISTOP Trial. Ann. Neurol. 2021;89:304–314. doi: 10.1002/ana.25956. PubMed DOI PMC
Moavero R., Benvenuto A., Emberti Gialloreti L., Siracusano M., Kotulska K., Weschke B., Riney K., Jansen F.E., Feucht M., Krsek P., et al. Early Clinical Predictors of Autism Spectrum Disorder in Infants with Tuberous Sclerosis Complex: Results from the EPISTOP Study. J. Clin. Med. 2019;8:788. doi: 10.3390/jcm8060788. PubMed DOI PMC
De Ridder J., Lavanga M., Verhelle B., Vervisch J., Lemmens K., Kotulska K., Moavero R., Curatolo P., Weschke B., Riney K., et al. Prediction of Neurodevelopment in Infants With Tuberous Sclerosis Complex Using Early EEG Characteristics. Front. Neurol. 2020;11:582891. doi: 10.3389/fneur.2020.582891. PubMed DOI PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Muller H., Marzi M.J., Nicassio F. IsomiRage: From Functional Classification to Differential Expression of MiRNA Isoforms. Front. Bioeng. Biotechnol. 2014;2:38. doi: 10.3389/fbioe.2014.00038. PubMed DOI PMC
Kozomara A., Griffiths-Jones S. MiRBase: Annotating High Confidence MicroRNAs Using Deep Sequencing Data. Nucleic Acids Res. 2014;42:D68–D73. doi: 10.1093/nar/gkt1181. PubMed DOI PMC
Langmead B., Salzberg S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Bongaarts A., van Scheppingen J., Korotkov A., Mijnsbergen C., Anink J.J., Jansen F.E., Spliet W.G.M., den Dunnen W.F.A., Gruber V.E., Scholl T., et al. The Coding and Non-Coding Transcriptional Landscape of Subependymal Giant Cell Astrocytomas. Brain J. Neurol. 2020;143:131–149. doi: 10.1093/brain/awz370. PubMed DOI PMC
Srivastava P.K., van Eyll J., Godard P., Mazzuferi M., Delahaye-Duriez A., Van Steenwinckel J., Gressens P., Danis B., Vandenplas C., Foerch P., et al. A Systems-Level Framework for Drug Discovery Identifies Csf1R as an Anti-Epileptic Drug Target. Nat. Commun. 2018;9:3561. doi: 10.1038/s41467-018-06008-4. PubMed DOI PMC
Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2|Genome Biology|Full Text. [(accessed on 6 April 2022)]. Available online: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8. PubMed DOI PMC
Robin X., Turck N., Hainard A., Tiberti N., Lisacek F., Sanchez J.-C., Müller M. PROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinform. 2011;12:77. doi: 10.1186/1471-2105-12-77. PubMed DOI PMC
Friedman J., Hastie T., Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010;33:1–22. doi: 10.18637/jss.v033.i01. PubMed DOI PMC
Ruijter J.M., Ramakers C., Hoogaars W.M.H., Karlen Y., Bakker O., van den Hoff M.J.B., Moorman A.F.M. Amplification Efficiency: Linking Baseline and Bias in the Analysis of Quantitative PCR Data. Nucleic Acids Res. 2009;37:e45. doi: 10.1093/nar/gkp045. PubMed DOI PMC
Korotkov A., Broekaart D.W.M., van Scheppingen J., Anink J.J., Baayen J.C., Idema S., Gorter J.A., Aronica E., van Vliet E.A. Increased Expression of Matrix Metalloproteinase 3 Can Be Attenuated by Inhibition of MicroRNA-155 in Cultured Human Astrocytes. J. Neuro. 2018;15:211. doi: 10.1186/s12974-018-1245-y. PubMed DOI PMC
Jeong A., Wong M. Systemic Disease Manifestations Associated with Epilepsy in Tuberous Sclerosis Complex. Epilepsia. 2016;57:1443–1449. doi: 10.1111/epi.13467. PubMed DOI
Webb D.W., Fryer A.E., Osborne J.P. Morbidity Associated with Tuberous Sclerosis: A Population Study. Dev. Med. Child Neurol. 1996;38:146–155. doi: 10.1111/j.1469-8749.1996.tb12086.x. PubMed DOI
Nabbout R., Belousova E., Benedik M.P., Carter T., Cottin V., Curatolo P., Dahlin M., D’amato L., d’Augères G.B., de Vries P.J., et al. Epilepsy in Tuberous Sclerosis Complex: Findings from the TOSCA Study. Epilepsia Open. 2019;4:73–84. doi: 10.1002/epi4.12286. PubMed DOI PMC
Overwater I.E., Bindels-de Heus K., Rietman A.B., Ten Hoopen L.W., Vergouwe Y., Moll H.A., de Wit M.-C.Y. Epilepsy in Children with Tuberous Sclerosis Complex: Chance of Remission and Response to Antiepileptic Drugs. Epilepsia. 2015;56:1239–1245. doi: 10.1111/epi.13050. PubMed DOI
de Vries P.J., Hunt A., Bolton P.F. The Psychopathologies of Children and Adolescents with Tuberous Sclerosis Complex (TSC): A Postal Survey of UK Families. Eur. Child Adolesc. Psychiatry. 2007;16:16–24. doi: 10.1007/s00787-006-0570-3. PubMed DOI
Lewis J.C., Thomas H.V., Murphy K.C., Sampson J.R. Genotype and Psychological Phenotype in Tuberous Sclerosis. J. Med. Genet. 2004;41:203–207. doi: 10.1136/jmg.2003.012757. PubMed DOI PMC
Pulsifer M.B., Winterkorn E.B., Thiele E.A. Psychological Profile of Adults with Tuberous Sclerosis Complex. Epilepsy Behav. 2007;10:402–406. doi: 10.1016/j.yebeh.2007.02.004. PubMed DOI
Trickett J., Heald M., Oliver C., Richards C. A Cross-Syndrome Cohort Comparison of Sleep Disturbance in Children with Smith-Magenis Syndrome, Angelman Syndrome, Autism Spectrum Disorder and Tuberous Sclerosis Complex. J. Neurodev. Disord. 2018;10:9. doi: 10.1186/s11689-018-9226-0. PubMed DOI PMC
de Vries P.J., Belousova E., Benedik M.P., Carter T., Cottin V., Curatolo P., Dahlin M., D’Amato L., d’Augères G.B., Ferreira J.C., et al. TSC-Associated Neuropsychiatric Disorders (TAND): Findings from the TOSCA Natural History Study. Orphanet J. Rare Dis. 2018;13:157. doi: 10.1186/s13023-018-0901-8. PubMed DOI PMC
Joinson C., O’Callaghan F.J., Osborne J.P., Martyn C., Harris T., Bolton P.F. Learning Disability and Epilepsy in an Epidemiological Sample of Individuals with Tuberous Sclerosis Complex. Psychol. Med. 2003;33:335–344. doi: 10.1017/S0033291702007092. PubMed DOI
Kingswood J.C., d’Augères G.B., Belousova E., Ferreira J.C., Carter T., Castellana R., Cottin V., Curatolo P., Dahlin M., de Vries P.J., et al. TuberOus SClerosis Registry to Increase Disease Awareness (TOSCA)-Baseline Data on 2093 Patients. Orphanet J. Rare Dis. 2017;12:2. doi: 10.1186/s13023-016-0553-5. PubMed DOI PMC
Gu Y., Zhang Y., Zhao C., Pan Y., Smales R., Wang H., Ni Y., Zhang H., Ni J., Ma J., et al. Serum MicroRNAs as Potential Biomarkers of Mandibular Prognathism. Oral Dis. 2014;20:55–61. doi: 10.1111/odi.12073. PubMed DOI
Prabu P., Rome S., Sathishkumar C., Gastebois C., Meugnier E., Mohan V., Balasubramanyam M. MicroRNAs from Urinary Extracellular Vesicles Are Non-Invasive Early Biomarkers of Diabetic Nephropathy in Type 2 Diabetes Patients with the “Asian Indian Phenotype”. Diabetes Metab. 2019;45:276–285. doi: 10.1016/j.diabet.2018.08.004. PubMed DOI
Wang T.-H., Hsueh C., Chen C.-C., Li W.-S., Yeh C.-T., Lian J.-H., Chang J.-L., Chen C.-Y. Melatonin Inhibits the Progression of Hepatocellular Carcinoma through MicroRNA Let7i-3p Mediated RAF1 Reduction. Int. J. Mol. Sci. 2018;19:2687. doi: 10.3390/ijms19092687. PubMed DOI PMC
Wang Y.-F., Lian X.-L., Zhong J.-Y., Su S.-X., Xu Y.-F., Xie X.-F., Wang Z.-P., Li W., Zhang L., Che D., et al. Serum Exosomal MicroRNA Let-7i-3p as Candidate Diagnostic Biomarker for Kawasaki Disease Patients with Coronary Artery Aneurysm. IUBMB Life. 2019;71:891–900. doi: 10.1002/iub.2015. PubMed DOI
Patrício P., Mateus-Pinheiro A., Alves N.D., Morais M., Rodrigues A.J., Bessa J.M., Sousa N., Pinto L. MiR-409 and MiR-411 Modulation in the Adult Brain of a Rat Model of Depression and After Fluoxetine Treatment. Front. Behav. Neurosci. 2020;14:136. doi: 10.3389/fnbeh.2020.00136. PubMed DOI PMC
Bessa J.M., Ferreira D., Melo I., Marques F., Cerqueira J.J., Palha J.A., Almeida O.F.X., Sousa N. The Mood-Improving Actions of Antidepressants Do Not Depend on Neurogenesis but Are Associated with Neuronal Remodeling. Mol. Psychiatry. 2009;14:764–773. doi: 10.1038/mp.2008.119. PubMed DOI
Zhou J., Zhao Y., Li Z., Zhu M., Wang Z., Li Y., Xu T., Feng D., Zhang S., Tang F., et al. MiR-103a-3p Regulates Mitophagy in Parkinson’s Disease through Parkin/Ambra1 Signaling. Pharmacol. Res. 2020;160:105197. doi: 10.1016/j.phrs.2020.105197. PubMed DOI
Geng L., Zhang T., Liu W., Chen Y. MiR-494-3p Modulates the Progression of in Vitro and in Vivo Parkinson’s Disease Models by Targeting SIRT3. Neurosci. Lett. 2018;675:23–30. doi: 10.1016/j.neulet.2018.03.037. PubMed DOI
Hojati Z., Omidi F., Dehbashi M., Mohammad Soltani B. The Highlighted Roles of Metabolic and Cellular Response to Stress Pathways Engaged in Circulating Hsa-MiR-494-3p and Hsa-MiR-661 in Alzheimer’s Disease. Iran. Biomed. J. 2021;25:62–67. doi: 10.29252/ibj.25.1.62. PubMed DOI PMC
Li B., Shen M., Yao H., Chen X., Xiao Z. Long Noncoding RNA TP73-AS1 Modulates Medulloblastoma Progression In Vitro And In Vivo By Sponging MiR-494-3p And Targeting EIF5A2. OncoTargets Ther. 2019;12:9873–9885. doi: 10.2147/OTT.S228305. PubMed DOI PMC
Li X., Wang H., Wu Z., Yang T., Zhao Z., Chen G., Xie X., Li B., Wei Y., Huang Y., et al. MiR-494-3p Regulates Cellular Proliferation, Invasion, Migration, and Apoptosis by PTEN/AKT Signaling in Human Glioblastoma Cells. Cell. Mol. Neurobiol. 2015;35:679–687. doi: 10.1007/s10571-015-0163-0. PubMed DOI PMC
Zheng D., Chen D., Lin F., Wang X., Lu L., Luo S., Chen J., Xu X. LncRNA NNT-AS1 Promote Glioma Cell Proliferation and Metastases through MiR-494-3p/PRMT1 Axis. Cell Cycle. 2020;19:1621–1631. doi: 10.1080/15384101.2020.1762037. PubMed DOI PMC
Yuan L., Feng F., Mao Z., Huang J.-Z., Liu Y., Li Y.-L., Jiang R.-X. Regulation Mechanism of MiR-494-3p on Endometrial Receptivity in Mice via PI3K/AKT/MTOR Pathway. Gen. Physiol. Biophys. 2021;40:351–363. doi: 10.4149/gpb_2021021. PubMed DOI
Li F., Li F., Chen W. Propofol Inhibits Cell Proliferation, Migration, and Invasion via Mir-410-3p/Transforming Growth Factor-β Receptor Type 2 (TGFBR2) Axis in Glioma. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020;26:e919523. doi: 10.12659/MSM.919523. PubMed DOI PMC
Wang C., Huang S., Rao S., Hu J., Zhang Y., Luo J., Wang H. Decreased Expression of MiR-410-3p Correlates with Poor Prognosis and Tumorigenesis in Human Glioma. Cancer Manag. Res. 2019;11:10581–10592. doi: 10.2147/CMAR.S202247. PubMed DOI PMC
Mc Devitt N., Gallagher L., Reilly R.B. Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS): Two Overlapping Disorders Reviewed through Electroencephalography—What Can Be Interpreted from the Available Information? Brain Sci. 2015;5:92–117. doi: 10.3390/brainsci5020092. PubMed DOI PMC
Oxelgren U.W., Myrelid Å., Annerén G., Ekstam B., Göransson C., Holmbom A., Isaksson A., Åberg M., Gustafsson J., Fernell E. Prevalence of Autism and Attention-Deficit-Hyperactivity Disorder in Down Syndrome: A Population-Based Study. Dev. Med. Child Neurol. 2017;59:276–283. doi: 10.1111/dmcn.13217. PubMed DOI
Fujino H., Saito T., Matsumura T., Shibata S., Iwata Y., Fujimura H., Imura O. Autism Spectrum Disorders Are Prevalent among Patients with Dystrophinopathies. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2018;39:1279–1282. doi: 10.1007/s10072-018-3341-2. PubMed DOI
Garg S., Lehtonen A., Huson S.M., Emsley R., Trump D., Evans D.G., Green J. Autism and Other Psychiatric Comorbidity in Neurofibromatosis Type 1: Evidence from a Population-Based Study. Dev. Med. Child Neurol. 2013;55:139–145. doi: 10.1111/dmcn.12043. PubMed DOI
Kleinman J.M., Ventola P.E., Pandey J., Verbalis A.D., Barton M., Hodgson S., Green J., Dumont-Mathieu T., Robins D.L., Fein D. Diagnostic Stability in Very Young Children with Autism Spectrum Disorders. J. Autism Dev. Disord. 2008;38:606–615. doi: 10.1007/s10803-007-0427-8. PubMed DOI PMC
Jozwiak S., Słowińska M., Borkowska J., Sadowski K., Łojszczyk B., Domańska-Pakieła D., Chmielewski D., Kaczorowska-Frontczak M., Głowacka J., Sijko K., et al. Preventive Antiepileptic Treatment in Tuberous Sclerosis Complex: A Long-Term, Prospective Trial. Pediatr. Neurol. 2019;101:18–25. doi: 10.1016/j.pediatrneurol.2019.07.008. PubMed DOI
Baker G.A., Jacoby A., Buck D., Stalgis C., Monnet D. Quality of Life of People with Epilepsy: A European Study. Epilepsia. 1997;38:353–362. doi: 10.1111/j.1528-1157.1997.tb01128.x. PubMed DOI
Jacoby A., Snape D., Baker G.A. Determinants of Quality of Life in People with Epilepsy. Neurol. Clin. 2009;27:843–863. doi: 10.1016/j.ncl.2009.06.003. PubMed DOI
Sherman E.M.S. Maximizing Quality of Life in People Living with Epilepsy. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 2009;36((Suppl. 2)):S17–S24. PubMed