miRNAs and isomiRs: Serum-Based Biomarkers for the Development of Intellectual Disability and Autism Spectrum Disorder in Tuberous Sclerosis Complex

. 2022 Jul 29 ; 10 (8) : . [epub] 20220729

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36009385

Grantová podpora
602391 Framework Programme FP7/2007-2013
STRATEGMED3/306,306/4/2016 EPIMARKER
LSHM17051-SGF EPI-BIO-MIR
952455 EU H2020-Twinning project EpiEpiNet

Odkazy

PubMed 36009385
PubMed Central PMC9405248
DOI 10.3390/biomedicines10081838
PII: biomedicines10081838
Knihovny.cz E-zdroje

Tuberous sclerosis complex (TSC) is a rare multi-system genetic disorder characterized by a high incidence of epilepsy and neuropsychiatric manifestations known as tuberous-sclerosis-associated neuropsychiatric disorders (TANDs), including autism spectrum disorder (ASD) and intellectual disability (ID). MicroRNAs (miRNAs) are small regulatory non-coding RNAs that regulate the expression of more than 60% of all protein-coding genes in humans and have been reported to be dysregulated in several diseases, including TSC. In the current study, RNA sequencing analysis was performed to define the miRNA and isoform (isomiR) expression patterns in serum. A Receiver Operating Characteristic (ROC) curve analysis was used to identify circulating molecular biomarkers, miRNAs, and isomiRs, able to discriminate the development of neuropsychiatric comorbidity, either ASD, ID, or ASD + ID, in patients with TSC. Part of our bioinformatics predictions was verified with RT-qPCR performed on RNA isolated from patients' serum. Our results support the notion that circulating miRNAs and isomiRs have the potential to aid standard clinical testing in the early risk assessment of ASD and ID development in TSC patients.

Chalfont Centre for Epilepsy Chalfont St Peter SL9 0RJ UK

Child Neurology and Psychiatry Unit Systems Medicine Department Tor Vergata University 00133 Rome Italy

Child Neurology Unit Neuroscience Department Bambino Gesù Children's Hospital IRCCS 00165 Rome Italy

Department of Child Neurology Brain Center University Medical Center Member of ERN EpiCare 3584 BA Utrecht The Netherlands

Department of Child Neurology Medical University of Warsaw 02 097 Warsaw Poland

Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London WC1E 6BT UK

Department of Development and Regeneration Section Pediatric Neurology University Hospitals KU Leuven 3000 Leuven Belgium

Department of Experimental Medicine Sapienza University of Rome 00161 Rome Italy

Department of Medicine Brigham and Women's Hospital Boston MA 02115 USA

Department of Neurology and Epileptology The Children's Memorial Health Institute 04 730 Warsaw Poland

Department of Neuropediatrics Charité University Medicine Berlin 13353 Berlin Germany

Department of Pathology Amsterdam Neuroscience Amsterdam UMC Location University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam The Netherlands

Department of Pediatrics and Adolescent Medicine Medical University of Vienna Member of ERN EpiCARE 1090 Vienna Austria

Department of Translational Neurosciences University of Antwerp 2000 Antwerp Belgium

Diagnose und Behandlungszentrum für Kinder Vivantes Klinikum Neukölln 12351 Berlin Germany

Faculty of Medicine The University of Queensland Herston QLD 4029 Australia

Internal Medicine Erasmus MC 3015 GD Rotterdam The Netherlands

International Institute of Molecular and Cell Biology 02 109 Warsaw Poland

Motol University Hospital Charles University 15000 Prague Czech Republic

Neurosciences Unit Queensland Children's Hospital South Brisbane QLD 4101 Australia

Reference Centre for Rare Epilepsies Department of Pediatric Neurology Necker Enfants Malades University Hospital APHP Member of ERN EpiCARE Université de Paris 149 Rue de Sèvres 75015 Paris France

Zobrazit více v PubMed

Northrup H., Aronow M.E., Bebin E.M., Bissler J., Darling T.N., de Vries P.J., Frost M.D., Fuchs Z., Gosnell E.S., Gupta N., et al. Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations. Pediatr. Neurol. 2021;123:50–66. doi: 10.1016/j.pediatrneurol.2021.07.011. PubMed DOI

Sancak O., Nellist M., Goedbloed M., Elfferich P., Wouters C., Maat-Kievit A., Zonnenberg B., Verhoef S., Halley D., van den Ouweland A. Mutational Analysis of the TSC1 and TSC2 Genes in a Diagnostic Setting: Genotype--Phenotype Correlations and Comparison of Diagnostic DNA Techniques in Tuberous Sclerosis Complex. Eur. J. Hum. Genet. EJHG. 2005;13:731–741. doi: 10.1038/sj.ejhg.5201402. PubMed DOI

Mühlebner A., Bongaarts A., Sarnat H.B., Scholl T., Aronica E. New Insights into a Spectrum of Developmental Malformations Related to MTOR Dysregulations: Challenges and Perspectives. J. Anat. 2019;235:521–542. doi: 10.1111/joa.12956. PubMed DOI PMC

Curatolo P., Moavero R., de Vries P.J. Neurological and Neuropsychiatric Aspects of Tuberous Sclerosis Complex. Lancet Neurol. 2015;14:733–745. doi: 10.1016/S1474-4422(15)00069-1. PubMed DOI

Capal J.K., Williams M.E., Pearson D.A., Kissinger R., Horn P.S., Murray D., Currans K., Kent B., Bebin M., Northrup H., et al. Profile of Autism Spectrum Disorder in Tuberous Sclerosis Complex: Results from a Longitudinal, Prospective, Multisite Study. Ann. Neurol. 2021;90:874–886. doi: 10.1002/ana.26249. PubMed DOI PMC

De Vries P.J., Leclezio L., Gardner-Lubbe S., Krueger D., Sahin M., Sparagana S., de Waele L., Jansen A. Multivariate Data Analysis Identifies Natural Clusters of Tuberous Sclerosis Complex Associated Neuropsychiatric Disorders (TAND) Orphanet J. Rare Dis. 2021;16:447. doi: 10.1186/s13023-021-02076-w. PubMed DOI PMC

de Vries P.J., Belousova E., Benedik M.P., Carter T., Cottin V., Curatolo P., D’Amato L., Beure d’Augères G., Ferreira J.C., Feucht M., et al. Natural Clusters of Tuberous Sclerosis Complex (TSC)-Associated Neuropsychiatric Disorders (TAND): New Findings from the TOSCA TAND Research Project. J. Neurodev. Disord. 2020;12:24. doi: 10.1186/s11689-020-09327-0. PubMed DOI PMC

Specchio N., Pietrafusa N., Trivisano M., Moavero R., De Palma L., Ferretti A., Vigevano F., Curatolo P. Autism and Epilepsy in Patients With Tuberous Sclerosis Complex. Front. Neurol. 2020;11:639. doi: 10.3389/fneur.2020.00639. PubMed DOI PMC

Gupta A., de Bruyn G., Tousseyn S., Krishnan B., Lagae L., Agarwal N., TSC Natural History Database Consortium Epilepsy and Neurodevelopmental Comorbidities in Tuberous Sclerosis Complex: A Natural History Study. Pediatr. Neurol. 2020;106:10–16. doi: 10.1016/j.pediatrneurol.2019.12.016. PubMed DOI

Bolton P.F., Park R.J., Higgins J.N.P., Griffiths P.D., Pickles A. Neuro-Epileptic Determinants of Autism Spectrum Disorders in Tuberous Sclerosis Complex. Brain J. Neurol. 2002;125:1247–1255. doi: 10.1093/brain/awf124. PubMed DOI

Smalley S.L. Autism and Tuberous Sclerosis. J. Autism Dev. Disord. 1998;28:407–414. doi: 10.1023/A:1026052421693. PubMed DOI

Ehninger D., de Vries P.J., Silva A.J. From MTOR to Cognition: Molecular and Cellular Mechanisms of Cognitive Impairments in Tuberous Sclerosis. J. Intellect. Disabil. Res. 2009;53:838–851. doi: 10.1111/j.1365-2788.2009.01208.x. PubMed DOI PMC

Napolioni V., Moavero R., Curatolo P. Recent Advances in Neurobiology of Tuberous Sclerosis Complex. Brain Dev. 2009;31:104–113. doi: 10.1016/j.braindev.2008.09.013. PubMed DOI

Bassetti D., Luhmann H.J., Kirischuk S. Effects of Mutations in TSC Genes on Neurodevelopment and Synaptic Transmission. Int. J. Mol. Sci. 2021;22:7273. doi: 10.3390/ijms22147273. PubMed DOI PMC

Moavero R., Kotulska K., Lagae L., Benvenuto A., Emberti Gialloreti L., Weschke B., Riney K., Feucht M., Krsek P., Nabbout R., et al. Is Autism Driven by Epilepsy in Infants with Tuberous Sclerosis Complex? Ann. Clin. Transl. Neurol. 2020;7:1371–1381. doi: 10.1002/acn3.51128. PubMed DOI PMC

World Health Organization. International Programme on Chemical Safety . Biomarkers and Risk Assessment: Concepts and Principles. World Health Organization; Geneva, Switzerland: 1993.

van Vliet E.A., Puhakka N., Mills J.D., Srivastava P.K., Johnson M.R., Roncon P., Das Gupta S., Karttunen J., Simonato M., Lukasiuk K., et al. Standardization Procedure for Plasma Biomarker Analysis in Rat Models of Epileptogenesis: Focus on Circulating MicroRNAs. Epilepsia. 2017;58:2013–2024. doi: 10.1111/epi.13915. PubMed DOI

Pitkänen A., Löscher W., Vezzani A., Becker A.J., Simonato M., Lukasiuk K., Gröhn O., Bankstahl J.P., Friedman A., Aronica E., et al. Advances in the Development of Biomarkers for Epilepsy. Lancet Neurol. 2016;15:843–856. doi: 10.1016/S1474-4422(16)00112-5. PubMed DOI

Pitkänen A., Henshall D.C., Cross J.H., Guerrini R., Jozwiak S., Kokaia M., Simonato M., Sisodiya S., Mifsud J. Advancing Research toward Faster Diagnosis, Better Treatment, and End of Stigma in Epilepsy. Epilepsia. 2019;60:1281–1292. doi: 10.1111/epi.16091. PubMed DOI

Stoicea N., Du A., Lakis D.C., Tipton C., Arias-Morales C.E., Bergese S.D. The MiRNA Journey from Theory to Practice as a CNS Biomarker. Front. Genet. 2016;7:11. doi: 10.3389/fgene.2016.00011. PubMed DOI PMC

Ha M., Kim V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014;15:509–524. doi: 10.1038/nrm3838. PubMed DOI

Broughton J.P., Lovci M.T., Huang J.L., Yeo G.W., Pasquinelli A.E. Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Mol. Cell. 2016;64:320–333. doi: 10.1016/j.molcel.2016.09.004. PubMed DOI PMC

Gebert L.F.R., MacRae I.J. Regulation of MicroRNA Function in Animals. Nat. Rev. Mol. Cell Biol. 2019;20:21–37. doi: 10.1038/s41580-018-0045-7. PubMed DOI PMC

Brennan G.P., Bauer S., Engel T., Jimenez-Mateos E.M., Del Gallo F., Hill T.D.M., Connolly N.M.C., Costard L.S., Neubert V., Salvetti B., et al. Genome-Wide MicroRNA Profiling of Plasma from Three Different Animal Models Identifies Biomarkers of Temporal Lobe Epilepsy. Neurobiol. Dis. 2020;144:105048. doi: 10.1016/j.nbd.2020.105048. PubMed DOI

Hu Z., Gao S., Lindberg D., Panja D., Wakabayashi Y., Li K., Kleinman J.E., Zhu J., Li Z. Temporal Dynamics of MiRNAs in Human DLPFC and Its Association with MiRNA Dysregulation in Schizophrenia. Transl. Psychiatry. 2019;9:196. doi: 10.1038/s41398-019-0538-y. PubMed DOI PMC

Jansen A.C., Jozwiak S., Lagae L., Kwiatkowski D., Jansen F.E., Aronica E., Kotulska K., Curatolo P. Long-Term, Prospective Study Evaluating Clinical and Molecular Biomarkers of Epileptogenesis in a Genetic Model of Epilepsy–Tuberous Sclerosis Complex. Impact. 2019;2019:6–9. doi: 10.21820/23987073.2019.4.6. DOI

Mills J.D., Iyer A.M., van Scheppingen J., Bongaarts A., Anink J.J., Janssen B., Zimmer T.S., Spliet W.G., van Rijen P.C., Jansen F.E., et al. Coding and Small Non-Coding Transcriptional Landscape of Tuberous Sclerosis Complex Cortical Tubers: Implications for Pathophysiology and Treatment. Sci. Rep. 2017;7:8089. doi: 10.1038/s41598-017-06145-8. PubMed DOI PMC

Raoof R., Bauer S., El Naggar H., Connolly N.M.C., Brennan G.P., Brindley E., Hill T., McArdle H., Spain E., Forster R.J., et al. Dual-Center, Dual-Platform MicroRNA Profiling Identifies Potential Plasma Biomarkers of Adult Temporal Lobe Epilepsy. EBioMedicine. 2018;38:127–141. doi: 10.1016/j.ebiom.2018.10.068. PubMed DOI PMC

Zhao D., Lin M., Chen J., Pedrosa E., Hrabovsky A., Fourcade H.M., Zheng D., Lachman H.M. MicroRNA Profiling of Neurons Generated Using Induced Pluripotent Stem Cells Derived from Patients with Schizophrenia and Schizoaffective Disorder, and 22q11.2 Del. PLoS ONE. 2015;10:e0132387. doi: 10.1371/journal.pone.0132387. PubMed DOI PMC

Lan C., Peng H., McGowan E.M., Hutvagner G., Li J. An IsomiR Expression Panel Based Novel Breast Cancer Classification Approach Using Improved Mutual Information. BMC Med. Genom. 2018;11:118. doi: 10.1186/s12920-018-0434-y. PubMed DOI PMC

Magee R., Telonis A.G., Cherlin T., Rigoutsos I., Londin E. Assessment of IsomiR Discrimination Using Commercial QPCR Methods. Non-Coding RNA. 2017;3:18. doi: 10.3390/ncrna3020018. PubMed DOI PMC

Schamberger A., Orbán T.I. 3’ IsomiR Species and DNA Contamination Influence Reliable Quantification of MicroRNAs by Stem-Loop Quantitative PCR. PLoS ONE. 2014;9:e106315. doi: 10.1371/journal.pone.0106315. PubMed DOI PMC

Telonis A.G., Magee R., Loher P., Chervoneva I., Londin E., Rigoutsos I. Knowledge about the Presence or Absence of MiRNA Isoforms (IsomiRs) Can Successfully Discriminate amongst 32 TCGA Cancer Types. Nucleic Acids Res. 2017;45:2973–2985. doi: 10.1093/nar/gkx082. PubMed DOI PMC

Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework-2001-Clinical Pharmacology & Therapeutics-Wiley Online Library. [(accessed on 6 April 2022)]. Available online: https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1067/mcp.2001.113989. PubMed DOI

Cocucci E., Racchetti G., Meldolesi J. Shedding Microvesicles: Artefacts No More. Trends Cell Biol. 2009;19:43–51. doi: 10.1016/j.tcb.2008.11.003. PubMed DOI

Ratajczak J., Wysoczynski M., Hayek F., Janowska-Wieczorek A., Ratajczak M.Z. Membrane-Derived Microvesicles: Important and Underappreciated Mediators of Cell-to-Cell Communication. Leukemia. 2006;20:1487–1495. doi: 10.1038/sj.leu.2404296. PubMed DOI

Simons M., Raposo G. Exosomes–Vesicular Carriers for Intercellular Communication. Curr. Opin. Cell Biol. 2009;21:575–581. doi: 10.1016/j.ceb.2009.03.007. PubMed DOI

Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs Are Transported in Plasma and Delivered to Recipient Cells by High-Density Lipoproteins. Nat. Cell Biol. 2011;13:423–433. doi: 10.1038/ncb2210. PubMed DOI PMC

Kos M.Z., Puppala S., Cruz D., Neary J.L., Kumar A., Dalan E., Li C., Nathanielsz P., Carless M.A. Blood-Based MiRNA Biomarkers as Correlates of Brain-Based MiRNA Expression. Front. Mol. Neurosci. 2022;15:89. doi: 10.3389/fnmol.2022.817290. PubMed DOI PMC

Kotulska K., Kwiatkowski D.J., Curatolo P., Weschke B., Riney K., Jansen F., Feucht M., Krsek P., Nabbout R., Jansen A.C., et al. Prevention of Epilepsy in Infants with Tuberous Sclerosis Complex in the EPISTOP Trial. Ann. Neurol. 2021;89:304–314. doi: 10.1002/ana.25956. PubMed DOI PMC

Moavero R., Benvenuto A., Emberti Gialloreti L., Siracusano M., Kotulska K., Weschke B., Riney K., Jansen F.E., Feucht M., Krsek P., et al. Early Clinical Predictors of Autism Spectrum Disorder in Infants with Tuberous Sclerosis Complex: Results from the EPISTOP Study. J. Clin. Med. 2019;8:788. doi: 10.3390/jcm8060788. PubMed DOI PMC

De Ridder J., Lavanga M., Verhelle B., Vervisch J., Lemmens K., Kotulska K., Moavero R., Curatolo P., Weschke B., Riney K., et al. Prediction of Neurodevelopment in Infants With Tuberous Sclerosis Complex Using Early EEG Characteristics. Front. Neurol. 2020;11:582891. doi: 10.3389/fneur.2020.582891. PubMed DOI PMC

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Muller H., Marzi M.J., Nicassio F. IsomiRage: From Functional Classification to Differential Expression of MiRNA Isoforms. Front. Bioeng. Biotechnol. 2014;2:38. doi: 10.3389/fbioe.2014.00038. PubMed DOI PMC

Kozomara A., Griffiths-Jones S. MiRBase: Annotating High Confidence MicroRNAs Using Deep Sequencing Data. Nucleic Acids Res. 2014;42:D68–D73. doi: 10.1093/nar/gkt1181. PubMed DOI PMC

Langmead B., Salzberg S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Bongaarts A., van Scheppingen J., Korotkov A., Mijnsbergen C., Anink J.J., Jansen F.E., Spliet W.G.M., den Dunnen W.F.A., Gruber V.E., Scholl T., et al. The Coding and Non-Coding Transcriptional Landscape of Subependymal Giant Cell Astrocytomas. Brain J. Neurol. 2020;143:131–149. doi: 10.1093/brain/awz370. PubMed DOI PMC

Srivastava P.K., van Eyll J., Godard P., Mazzuferi M., Delahaye-Duriez A., Van Steenwinckel J., Gressens P., Danis B., Vandenplas C., Foerch P., et al. A Systems-Level Framework for Drug Discovery Identifies Csf1R as an Anti-Epileptic Drug Target. Nat. Commun. 2018;9:3561. doi: 10.1038/s41467-018-06008-4. PubMed DOI PMC

Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2|Genome Biology|Full Text. [(accessed on 6 April 2022)]. Available online: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8. PubMed DOI PMC

Robin X., Turck N., Hainard A., Tiberti N., Lisacek F., Sanchez J.-C., Müller M. PROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinform. 2011;12:77. doi: 10.1186/1471-2105-12-77. PubMed DOI PMC

Friedman J., Hastie T., Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010;33:1–22. doi: 10.18637/jss.v033.i01. PubMed DOI PMC

Ruijter J.M., Ramakers C., Hoogaars W.M.H., Karlen Y., Bakker O., van den Hoff M.J.B., Moorman A.F.M. Amplification Efficiency: Linking Baseline and Bias in the Analysis of Quantitative PCR Data. Nucleic Acids Res. 2009;37:e45. doi: 10.1093/nar/gkp045. PubMed DOI PMC

Korotkov A., Broekaart D.W.M., van Scheppingen J., Anink J.J., Baayen J.C., Idema S., Gorter J.A., Aronica E., van Vliet E.A. Increased Expression of Matrix Metalloproteinase 3 Can Be Attenuated by Inhibition of MicroRNA-155 in Cultured Human Astrocytes. J. Neuro. 2018;15:211. doi: 10.1186/s12974-018-1245-y. PubMed DOI PMC

Jeong A., Wong M. Systemic Disease Manifestations Associated with Epilepsy in Tuberous Sclerosis Complex. Epilepsia. 2016;57:1443–1449. doi: 10.1111/epi.13467. PubMed DOI

Webb D.W., Fryer A.E., Osborne J.P. Morbidity Associated with Tuberous Sclerosis: A Population Study. Dev. Med. Child Neurol. 1996;38:146–155. doi: 10.1111/j.1469-8749.1996.tb12086.x. PubMed DOI

Nabbout R., Belousova E., Benedik M.P., Carter T., Cottin V., Curatolo P., Dahlin M., D’amato L., d’Augères G.B., de Vries P.J., et al. Epilepsy in Tuberous Sclerosis Complex: Findings from the TOSCA Study. Epilepsia Open. 2019;4:73–84. doi: 10.1002/epi4.12286. PubMed DOI PMC

Overwater I.E., Bindels-de Heus K., Rietman A.B., Ten Hoopen L.W., Vergouwe Y., Moll H.A., de Wit M.-C.Y. Epilepsy in Children with Tuberous Sclerosis Complex: Chance of Remission and Response to Antiepileptic Drugs. Epilepsia. 2015;56:1239–1245. doi: 10.1111/epi.13050. PubMed DOI

de Vries P.J., Hunt A., Bolton P.F. The Psychopathologies of Children and Adolescents with Tuberous Sclerosis Complex (TSC): A Postal Survey of UK Families. Eur. Child Adolesc. Psychiatry. 2007;16:16–24. doi: 10.1007/s00787-006-0570-3. PubMed DOI

Lewis J.C., Thomas H.V., Murphy K.C., Sampson J.R. Genotype and Psychological Phenotype in Tuberous Sclerosis. J. Med. Genet. 2004;41:203–207. doi: 10.1136/jmg.2003.012757. PubMed DOI PMC

Pulsifer M.B., Winterkorn E.B., Thiele E.A. Psychological Profile of Adults with Tuberous Sclerosis Complex. Epilepsy Behav. 2007;10:402–406. doi: 10.1016/j.yebeh.2007.02.004. PubMed DOI

Trickett J., Heald M., Oliver C., Richards C. A Cross-Syndrome Cohort Comparison of Sleep Disturbance in Children with Smith-Magenis Syndrome, Angelman Syndrome, Autism Spectrum Disorder and Tuberous Sclerosis Complex. J. Neurodev. Disord. 2018;10:9. doi: 10.1186/s11689-018-9226-0. PubMed DOI PMC

de Vries P.J., Belousova E., Benedik M.P., Carter T., Cottin V., Curatolo P., Dahlin M., D’Amato L., d’Augères G.B., Ferreira J.C., et al. TSC-Associated Neuropsychiatric Disorders (TAND): Findings from the TOSCA Natural History Study. Orphanet J. Rare Dis. 2018;13:157. doi: 10.1186/s13023-018-0901-8. PubMed DOI PMC

Joinson C., O’Callaghan F.J., Osborne J.P., Martyn C., Harris T., Bolton P.F. Learning Disability and Epilepsy in an Epidemiological Sample of Individuals with Tuberous Sclerosis Complex. Psychol. Med. 2003;33:335–344. doi: 10.1017/S0033291702007092. PubMed DOI

Kingswood J.C., d’Augères G.B., Belousova E., Ferreira J.C., Carter T., Castellana R., Cottin V., Curatolo P., Dahlin M., de Vries P.J., et al. TuberOus SClerosis Registry to Increase Disease Awareness (TOSCA)-Baseline Data on 2093 Patients. Orphanet J. Rare Dis. 2017;12:2. doi: 10.1186/s13023-016-0553-5. PubMed DOI PMC

Gu Y., Zhang Y., Zhao C., Pan Y., Smales R., Wang H., Ni Y., Zhang H., Ni J., Ma J., et al. Serum MicroRNAs as Potential Biomarkers of Mandibular Prognathism. Oral Dis. 2014;20:55–61. doi: 10.1111/odi.12073. PubMed DOI

Prabu P., Rome S., Sathishkumar C., Gastebois C., Meugnier E., Mohan V., Balasubramanyam M. MicroRNAs from Urinary Extracellular Vesicles Are Non-Invasive Early Biomarkers of Diabetic Nephropathy in Type 2 Diabetes Patients with the “Asian Indian Phenotype”. Diabetes Metab. 2019;45:276–285. doi: 10.1016/j.diabet.2018.08.004. PubMed DOI

Wang T.-H., Hsueh C., Chen C.-C., Li W.-S., Yeh C.-T., Lian J.-H., Chang J.-L., Chen C.-Y. Melatonin Inhibits the Progression of Hepatocellular Carcinoma through MicroRNA Let7i-3p Mediated RAF1 Reduction. Int. J. Mol. Sci. 2018;19:2687. doi: 10.3390/ijms19092687. PubMed DOI PMC

Wang Y.-F., Lian X.-L., Zhong J.-Y., Su S.-X., Xu Y.-F., Xie X.-F., Wang Z.-P., Li W., Zhang L., Che D., et al. Serum Exosomal MicroRNA Let-7i-3p as Candidate Diagnostic Biomarker for Kawasaki Disease Patients with Coronary Artery Aneurysm. IUBMB Life. 2019;71:891–900. doi: 10.1002/iub.2015. PubMed DOI

Patrício P., Mateus-Pinheiro A., Alves N.D., Morais M., Rodrigues A.J., Bessa J.M., Sousa N., Pinto L. MiR-409 and MiR-411 Modulation in the Adult Brain of a Rat Model of Depression and After Fluoxetine Treatment. Front. Behav. Neurosci. 2020;14:136. doi: 10.3389/fnbeh.2020.00136. PubMed DOI PMC

Bessa J.M., Ferreira D., Melo I., Marques F., Cerqueira J.J., Palha J.A., Almeida O.F.X., Sousa N. The Mood-Improving Actions of Antidepressants Do Not Depend on Neurogenesis but Are Associated with Neuronal Remodeling. Mol. Psychiatry. 2009;14:764–773. doi: 10.1038/mp.2008.119. PubMed DOI

Zhou J., Zhao Y., Li Z., Zhu M., Wang Z., Li Y., Xu T., Feng D., Zhang S., Tang F., et al. MiR-103a-3p Regulates Mitophagy in Parkinson’s Disease through Parkin/Ambra1 Signaling. Pharmacol. Res. 2020;160:105197. doi: 10.1016/j.phrs.2020.105197. PubMed DOI

Geng L., Zhang T., Liu W., Chen Y. MiR-494-3p Modulates the Progression of in Vitro and in Vivo Parkinson’s Disease Models by Targeting SIRT3. Neurosci. Lett. 2018;675:23–30. doi: 10.1016/j.neulet.2018.03.037. PubMed DOI

Hojati Z., Omidi F., Dehbashi M., Mohammad Soltani B. The Highlighted Roles of Metabolic and Cellular Response to Stress Pathways Engaged in Circulating Hsa-MiR-494-3p and Hsa-MiR-661 in Alzheimer’s Disease. Iran. Biomed. J. 2021;25:62–67. doi: 10.29252/ibj.25.1.62. PubMed DOI PMC

Li B., Shen M., Yao H., Chen X., Xiao Z. Long Noncoding RNA TP73-AS1 Modulates Medulloblastoma Progression In Vitro And In Vivo By Sponging MiR-494-3p And Targeting EIF5A2. OncoTargets Ther. 2019;12:9873–9885. doi: 10.2147/OTT.S228305. PubMed DOI PMC

Li X., Wang H., Wu Z., Yang T., Zhao Z., Chen G., Xie X., Li B., Wei Y., Huang Y., et al. MiR-494-3p Regulates Cellular Proliferation, Invasion, Migration, and Apoptosis by PTEN/AKT Signaling in Human Glioblastoma Cells. Cell. Mol. Neurobiol. 2015;35:679–687. doi: 10.1007/s10571-015-0163-0. PubMed DOI PMC

Zheng D., Chen D., Lin F., Wang X., Lu L., Luo S., Chen J., Xu X. LncRNA NNT-AS1 Promote Glioma Cell Proliferation and Metastases through MiR-494-3p/PRMT1 Axis. Cell Cycle. 2020;19:1621–1631. doi: 10.1080/15384101.2020.1762037. PubMed DOI PMC

Yuan L., Feng F., Mao Z., Huang J.-Z., Liu Y., Li Y.-L., Jiang R.-X. Regulation Mechanism of MiR-494-3p on Endometrial Receptivity in Mice via PI3K/AKT/MTOR Pathway. Gen. Physiol. Biophys. 2021;40:351–363. doi: 10.4149/gpb_2021021. PubMed DOI

Li F., Li F., Chen W. Propofol Inhibits Cell Proliferation, Migration, and Invasion via Mir-410-3p/Transforming Growth Factor-β Receptor Type 2 (TGFBR2) Axis in Glioma. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020;26:e919523. doi: 10.12659/MSM.919523. PubMed DOI PMC

Wang C., Huang S., Rao S., Hu J., Zhang Y., Luo J., Wang H. Decreased Expression of MiR-410-3p Correlates with Poor Prognosis and Tumorigenesis in Human Glioma. Cancer Manag. Res. 2019;11:10581–10592. doi: 10.2147/CMAR.S202247. PubMed DOI PMC

Mc Devitt N., Gallagher L., Reilly R.B. Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS): Two Overlapping Disorders Reviewed through Electroencephalography—What Can Be Interpreted from the Available Information? Brain Sci. 2015;5:92–117. doi: 10.3390/brainsci5020092. PubMed DOI PMC

Oxelgren U.W., Myrelid Å., Annerén G., Ekstam B., Göransson C., Holmbom A., Isaksson A., Åberg M., Gustafsson J., Fernell E. Prevalence of Autism and Attention-Deficit-Hyperactivity Disorder in Down Syndrome: A Population-Based Study. Dev. Med. Child Neurol. 2017;59:276–283. doi: 10.1111/dmcn.13217. PubMed DOI

Fujino H., Saito T., Matsumura T., Shibata S., Iwata Y., Fujimura H., Imura O. Autism Spectrum Disorders Are Prevalent among Patients with Dystrophinopathies. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2018;39:1279–1282. doi: 10.1007/s10072-018-3341-2. PubMed DOI

Garg S., Lehtonen A., Huson S.M., Emsley R., Trump D., Evans D.G., Green J. Autism and Other Psychiatric Comorbidity in Neurofibromatosis Type 1: Evidence from a Population-Based Study. Dev. Med. Child Neurol. 2013;55:139–145. doi: 10.1111/dmcn.12043. PubMed DOI

Kleinman J.M., Ventola P.E., Pandey J., Verbalis A.D., Barton M., Hodgson S., Green J., Dumont-Mathieu T., Robins D.L., Fein D. Diagnostic Stability in Very Young Children with Autism Spectrum Disorders. J. Autism Dev. Disord. 2008;38:606–615. doi: 10.1007/s10803-007-0427-8. PubMed DOI PMC

Jozwiak S., Słowińska M., Borkowska J., Sadowski K., Łojszczyk B., Domańska-Pakieła D., Chmielewski D., Kaczorowska-Frontczak M., Głowacka J., Sijko K., et al. Preventive Antiepileptic Treatment in Tuberous Sclerosis Complex: A Long-Term, Prospective Trial. Pediatr. Neurol. 2019;101:18–25. doi: 10.1016/j.pediatrneurol.2019.07.008. PubMed DOI

Baker G.A., Jacoby A., Buck D., Stalgis C., Monnet D. Quality of Life of People with Epilepsy: A European Study. Epilepsia. 1997;38:353–362. doi: 10.1111/j.1528-1157.1997.tb01128.x. PubMed DOI

Jacoby A., Snape D., Baker G.A. Determinants of Quality of Life in People with Epilepsy. Neurol. Clin. 2009;27:843–863. doi: 10.1016/j.ncl.2009.06.003. PubMed DOI

Sherman E.M.S. Maximizing Quality of Life in People Living with Epilepsy. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 2009;36((Suppl. 2)):S17–S24. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace