Prevention of Epilepsy in Infants with Tuberous Sclerosis Complex in the EPISTOP Trial
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie, práce podpořená grantem
PubMed
33180985
PubMed Central
PMC7898885
DOI
10.1002/ana.25956
Knihovny.cz E-zdroje
- MeSH
- antikonvulziva terapeutické užití MeSH
- elektroencefalografie MeSH
- epilepsie farmakoterapie etiologie patofyziologie prevence a kontrola MeSH
- kojenec MeSH
- křeče u dětí prevence a kontrola MeSH
- lidé MeSH
- novorozenec MeSH
- plošný screening MeSH
- refrakterní epilepsie prevence a kontrola MeSH
- tuberózní skleróza komplikace patofyziologie MeSH
- vigabatrin terapeutické užití MeSH
- záchvaty diagnóza farmakoterapie etiologie prevence a kontrola MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- antikonvulziva MeSH
- vigabatrin MeSH
OBJECTIVE: Epilepsy develops in 70 to 90% of children with tuberous sclerosis complex (TSC) and is often resistant to medication. Recently, the concept of preventive antiepileptic treatment to modify the natural history of epilepsy has been proposed. EPISTOP was a clinical trial designed to compare preventive versus conventional antiepileptic treatment in TSC infants. METHODS: In this multicenter study, 94 infants with TSC without seizure history were followed with monthly video electroencephalography (EEG), and received vigabatrin either as conventional antiepileptic treatment, started after the first electrographic or clinical seizure, or preventively when epileptiform EEG activity before seizures was detected. At 6 sites, subjects were randomly allocated to treatment in a 1:1 ratio in a randomized controlled trial (RCT). At 4 sites, treatment allocation was fixed; this was denoted an open-label trial (OLT). Subjects were followed until 2 years of age. The primary endpoint was the time to first clinical seizure. RESULTS: In 54 subjects, epileptiform EEG abnormalities were identified before seizures. Twenty-seven were included in the RCT and 27 in the OLT. The time to the first clinical seizure was significantly longer with preventive than conventional treatment [RCT: 364 days (95% confidence interval [CI] = 223-535) vs 124 days (95% CI = 33-149); OLT: 426 days (95% CI = 258-628) vs 106 days (95% CI = 11-149)]. At 24 months, our pooled analysis showed preventive treatment reduced the risk of clinical seizures (odds ratio [OR] = 0.21, p = 0.032), drug-resistant epilepsy (OR = 0.23, p = 0.022), and infantile spasms (OR = 0, p < 0.001). No adverse events related to preventive treatment were noted. INTERPRETATION: Preventive treatment with vigabatrin was safe and modified the natural history of seizures in TSC, reducing the risk and severity of epilepsy. ANN NEUROL 2021;89:304-314.
Brigham and Women's Hospital Harvard Medical School Boston MA USA
Child Neurology and Psychiatry Unit Systems Medicine Department Tor Vergata University Rome Italy
Department of Child Neurology Brain Center University Medical Center Utrecht Utrecht The Netherlands
Department of Child Neurology Charité University Medicine Berlin Berlin Germany
Department of Child Neurology Medical University of Warsaw Warsaw Poland
Department of Neurology and Epileptology The Children's Memorial Health Institute Warsaw Poland
Department of Pediatrics University Hospital Vienna Vienna Austria
Motol University Hospital Charles University Prague 5 Czech Republic
Neurogenetics Research Group Vrije Universiteit Brussel Brussels Belgium
Neurosciences Unit Queensland Children's Hospital South Brisbane QLD Australia
Pediatric Neurology Unit UZ Brussel Brussels Belgium
School of Medicine University of Queensland St Lucia QLD Australia
Transition Technologies Warsaw Poland
Warsaw University of Technology Institute of Heat Engineering Warsaw Poland
Warsaw University of Technology The Faculty of Electronics and Information Technology Warsaw Poland
Zobrazit více v PubMed
Salussolia CL, Klonowska K, Kwiatkowski DJ, Sahin M. Genetic etiologies, diagnosis, and treatment of tuberous sclerosis complex. Annu Rev Genomics Hum Genet 2019;31:217–240. PubMed
Dragoumi P, O'Callaghan F, Zafeiriou DI. Diagnosis of tuberous sclerosis complex in the fetus. Eur J Paediatr Neurol 2018;22:1027–1034. PubMed
Overwater IE, Bindels‐de Heus K, Rietman AB, et al. Epilepsy in children with tuberous sclerosis complex: chance of remission and response to antiepileptic drugs. Epilepsia 2015;56:1239–1245. PubMed
Nabbout R, Belousova E, Benedik MP, et al. Epilepsy in tuberous sclerosis complex: findings from the TOSCA study. Epilepsia Open 2019;4:73–84. PubMed PMC
Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE Official Report: a practical clinical definition of epilepsy. Epilepsia 2014;55:475–482. PubMed
Cusmai R, Moavero R, Bombardieri R, et al. Long‐term neurological outcome in children with early‐onset epilepsy associated with tuberous sclerosis. Epilepsy Behav 2011;22:735–739. PubMed
Jóźwiak S, Kotulska K, Domańska‐Pakieła D, et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur J Paediatr Neurol 2011;15:424–431. PubMed
de Groen A‐EC, Bolton J, Bergin AM, et al. The evolution of subclinical seizures in children with tuberous sclerosis complex. J Child Neurol 2019;34:770–777. PubMed
Domańska‐Pakieła D, Kaczorowska M, Jurkiewicz E, et al. EEG abnormalities preceding the epilepsy onset in tuberous sclerosis complex patients—prospective study of 5 patients. Eur J Paediatr Neurol 2014;18:458–468. PubMed
Wu JY, Goyal M, Peters JM, et al. Scalp EEG spikes predict impending epilepsy in TSC infants: a longitudinal observational study. Epilepsia 2019;60:2428–2436. PubMed PMC
Roach ES, Kwiatkowski DJ. Seizures in tuberous sclerosis complex: hitting the target. Lancet 2016;388:2062–2064. PubMed
World Health Organization . Epilepsy: a public health imperative. 2019. Available at: https://www.who.int/mental_health/neurology/epilepsy/report_2019/en/. Last accessed June 9, 2020.
Curatolo P, Nabbout R, Lagae L, et al. Management of epilepsy associated with tuberous sclerosis complex: updated clinical recommendations. Eur J Paediatr Neurol 2018;22:738–748. PubMed
Northrup H, Krueger DA, Northrup H, et al. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 2013;49:243–254. PubMed PMC
Curatolo P, Jóźwiak S, Nabbout R, TSC Consensus Meeting for SEGA and Epilepsy Management . Management of epilepsy associated with tuberous sclerosis complex (TSC): clinical recommendations. Eur J Paediatr Neurol 2012;16:582–586. PubMed
Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2009;51:1069–1077. PubMed
Reilly C, Atkinson P, Das KB, et al. Neurobehavioral comorbidities in children with active epilepsy: a population‐based study. Pediatrics 2014;133:586–593. PubMed
Pitkänen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 2011;10:173–186. PubMed
Marguet SL, Le‐Schulte VTQ, Merseburg A, et al. Treatment during a vulnerable developmental period rescues a genetic epilepsy. Nat Med 2015;21:1436–1444. PubMed
Zeng L‐H, Xu L, Gutmann DH, Wong M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 2008;63:444–453. PubMed PMC
Thompson K, Pohlmann‐Eden B, Campbell LA, Abel H. Pharmacological treatments for preventing epilepsy following traumatic head injury. Cochrane Database Syst Rev 2015;8:CD009900. PubMed PMC
Moavero R, Benvenuto A, Emberti Gialloreti L, et al. Early clinical predictors of autism spectrum disorder in infants with tuberous sclerosis complex: results from the EPISTOP study. J Clin Med 2019;8:788. PubMed PMC
Dabora SL, Jozwiak S, Franz DN, et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 2001;68:64–80. PubMed PMC
Wang Y‐Y, Pang L‐Y, Ma S‐F, et al. Epilepsy may be the major risk factor of mental retardation in children with tuberous sclerosis: a retrospective cohort study. Epilepsy Behav 2017;77:13–18. PubMed
Capal JK, Bernardino‐Cuesta B, Horn PS, et al. Influence of seizures on early development in tuberous sclerosis complex. Epilepsy Behav 2017;70:245–252. PubMed PMC
Yates JR, MacLean C, Higgins JNP, et al. The Tuberous Sclerosis 2000 Study: presentation, initial assessments and implications for diagnosis and management. Arch Dis Child 2011;96:1020–1025. PubMed
Jozwiak S, Goodman M, Lamm SH. Poor mental development in patients with tuberous sclerosis complex: clinical risk factors. Arch Neurol 1998;55:379–384. PubMed
Jozwiak S, Słowińska M, Borkowska J, et al. Preventive antiepileptic treatment in tuberous sclerosis complex: long‐term, prospective trial. Pediatr Neurol 2019;101:18–25. PubMed
Chu‐Shore CJ, Major P, Camposano S, et al. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 2010;51:1236–1241. PubMed PMC
Curatolo P, Seri S, Verdecchia M, Bombardieri R. Infantile spasms in tuberous sclerosis complex. Brain Dev 2001;23:502–507. PubMed
Kotulska K, Jurkiewicz E, Domańska‐Pakieła D, et al. Epilepsy in newborns with tuberous sclerosis complex. Eur J Paediatr Neurol 2014;18:714–721. PubMed
Grant AC, Abdel‐Baki SG, Weedon J, et al. EEG interpretation reliability and interpreter confidence: a large single‐center study. Epilepsy Behav 2014;32:102–127. PubMed PMC
Jing J, Herlopian A, Karakis I, et al. Interrater reliability of experts in identifying interictal epileptiform discharges in electroencephalograms. JAMA Neurol 2019;77:49–57. PubMed PMC