Molecular EPISTOP, a comprehensive multi-omic analysis of blood from Tuberous Sclerosis Complex infants age birth to two years

. 2023 Nov 23 ; 14 (1) : 7664. [epub] 20231123

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37996417

Grantová podpora
602391-2 European Commission (EC)

Odkazy

PubMed 37996417
PubMed Central PMC10667269
DOI 10.1038/s41467-023-42855-6
PII: 10.1038/s41467-023-42855-6
Knihovny.cz E-zdroje

We present a comprehensive multi-omic analysis of the EPISTOP prospective clinical trial of early intervention with vigabatrin for pre-symptomatic epilepsy treatment in Tuberous Sclerosis Complex (TSC), in which 93 infants with TSC were followed from birth to age 2 years, seeking biomarkers of epilepsy development. Vigabatrin had profound effects on many metabolites, increasing serum deoxycytidine monophosphate (dCMP) levels 52-fold. Most serum proteins and metabolites, and blood RNA species showed significant change with age. Thirty-nine proteins, metabolites, and genes showed significant differences between age-matched control and TSC infants. Six also showed a progressive difference in expression between control, TSC without epilepsy, and TSC with epilepsy groups. A multivariate approach using enrollment samples identified multiple 3-variable predictors of epilepsy, with the best having a positive predictive value of 0.987. This rich dataset will enable further discovery and analysis of developmental effects, and associations with seizure development in TSC.

Amsterdam UMC University of Amsterdam Department of Pathology Amsterdam Neuroscience Amsterdam The Netherlands

Chalfont Centre for Epilepsy Chalfont St Peter UK

Child Neurology and Psychiatry Unit Systems Medicine Department Tor Vergata University Rome Italy

Department of Child Neurology Brain Center University Medical Center Utrecht Utrecht The Netherlands

Department of Child Neurology Charité University Medicine Berlin Berlin Germany

Department of Child Neurology Medical University of Warsaw Warsaw Poland

Department of Clinical and Experimental Epilepsy UCL Queen Square Institute of Neurology London UK

Department of Development and Regeneration Section Pediatric Neurology University Hospitals KU Leuven Leuven Belgium

Department of Internal Medicine Erasmus MC Rotterdam Netherlands

Department of Medicine Brigham and Women's Hospital Boston MA USA

Department of Medicine Harvard Medical School and Division of Signal Transduction Beth Israel Deaconess Medical Center Boston MA USA

Department of Neurology and Epileptology member of ERN EPICARE The Children's Memorial Health Institute Warsaw Poland

Department of Paediatric Neurology Motol University Hospital 2nd Medical Faculty Charles University Prague Czech Republic

Department of Pathology and Molecular Medicine Motol University Hospital 2nd Medical Faculty Charles University Prague Czech Republic

Department of Pathology University Medical Center Utrecht Utrecht The Netherlands

Department of Pediatric Neurology Reference Centre for Rare Epilepsies Necker Enfants Malades Hospital Université Paris cité Imagine Institute Paris France

Developmental Neurology Bambino Gesù Children's Hospital IRCCS Rome Italy

Diagnose und Behandlungszentrum für Kinder Vivantes Klinikum Neukölln Berlin Germany

Epilepsy Service Department of Pediatrics and Adolescent Medicine Medical University of Vienna Member of ERN EpiCARE Vienna Austria

GenomeScan Leiden The Netherlands

International Institute of Molecular and Cell Biology Warsaw Poland

Neurogenetics Research Group Vrije Universiteit Brussel Brussels Belgium

Neurosciences Unit Queensland Children's Hospital South Brisbane Queensland Australia

Proteome Factory AG Berlin Germany

School of Medicine University of Queensland St Lucia Queensland Australia

Stichting Epilepsie Instellingen Nederland Heemstede the Netherlands Utrecht The Netherlands

Transition Technologies Science Warsaw Poland

Warsaw University of Technology Institute of Heat Engineering Warsaw Poland

Warsaw University of Technology The Institute of Computer Science Warsaw Poland

Zobrazit více v PubMed

Salussolia CL, Klonowska K, Kwiatkowski DJ, Sahin M. Genetic Etiologies, Diagnosis, and Treatment of Tuberous Sclerosis Complex. Annu Rev. Genom. Hum. Genet. 2019;20:217–240. doi: 10.1146/annurev-genom-083118-015354. PubMed DOI

Henske EP, Jozwiak S, Kingswood JC, Sampson JR, Thiele EA. Tuberous sclerosis complex. Nat. Rev. Dis. Prim. 2016;2:16035. doi: 10.1038/nrdp.2016.35. PubMed DOI

Curatolo P, Specchio N, Aronica E. Advances in the genetics and neuropathology of tuberous sclerosis complex: edging closer to targeted therapy. Lancet Neurol. 2022;21:843–856. doi: 10.1016/S1474-4422(22)00213-7. PubMed DOI

Curatolo P, et al. Management of epilepsy associated with tuberous sclerosis complex: Updated clinical recommendations. Eur. J. Paediatr. Neurol. 2018;22:738–748. doi: 10.1016/j.ejpn.2018.05.006. PubMed DOI

de Vries PJ, et al. Tuberous sclerosis associated neuropsychiatric disorders (TAND) and the TAND Checklist. Pediatr. Neurol. 2015;52:25–35. doi: 10.1016/j.pediatrneurol.2014.10.004. PubMed DOI PMC

Cembrowski MS, Spruston N. Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons. Nat. Rev. Neurosci. 2019;20:193–204. doi: 10.1038/s41583-019-0125-5. PubMed DOI

Jozwiak S, et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 2011;15:424–431. doi: 10.1016/j.ejpn.2011.03.010. PubMed DOI

Kotulska K, et al. Prevention of Epilepsy in Infants with Tuberous Sclerosis Complex in the EPISTOP Trial. Ann. Neurol. 2021;89:304–314. doi: 10.1002/ana.25956. PubMed DOI PMC

Ogorek B, et al. TSC2 pathogenic variants are predictive of severe clinical manifestations in TSC infants: results of the EPISTOP study. Genet. Med. 2020;22:1489–1497. doi: 10.1038/s41436-020-0823-4. PubMed DOI

Petroff OA, Hyder F, Collins T, Mattson RH, Rothman DL. Acute effects of vigabatrin on brain GABA and homocarnosine in patients with complex partial seizures. Epilepsia. 1999;40:958–964. doi: 10.1111/j.1528-1157.1999.tb00803.x. PubMed DOI

Walters DC, et al. Preclinical tissue distribution and metabolic correlations of vigabatrin, an antiepileptic drug associated with potential use-limiting visual field defects. Pharm. Res Perspect. 2019;7:e00456. doi: 10.1002/prp2.456. PubMed DOI PMC

Ball D, Rose E, Alpert E. Alpha-fetoprotein levels in normal adults. Am. J. Med Sci. 1992;303:157–159. doi: 10.1097/00000441-199203000-00004. PubMed DOI

Clemson CM, McNeil JA, Willard HF, Lawrence JB. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 1996;132:259–275. doi: 10.1083/jcb.132.3.259. PubMed DOI PMC

Li K, et al. Age-dependent changes of total and differential white blood cell counts in children. Chin. Med J. (Engl.) 2020;133:1900–1907. doi: 10.1097/CM9.0000000000000854. PubMed DOI PMC

Olin A, et al. Longitudinal analyses of development of the immune system during the first five years of life in relation to lifestyle. Allergy. 2022;77:1583–1595. doi: 10.1111/all.15232. PubMed DOI

Song W, et al. Age and sex specific reference intervals of 13 hematological analytes in Chinese children and adolescents aged from 28 days up to 20 years: the PRINCE study. Clin. Chem. Lab Med. 2022;60:1250–1260. doi: 10.1515/cclm-2022-0304. PubMed DOI

Newman AM, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods. 2015;12:453–457. doi: 10.1038/nmeth.3337. PubMed DOI PMC

Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer. 2020;20:74–88. doi: 10.1038/s41568-019-0216-7. PubMed DOI PMC

Boughorbel S, Jarray F, El-Anbari M. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS One. 2017;12:e0177678. doi: 10.1371/journal.pone.0177678. PubMed DOI PMC

Lee AH, et al. Dynamic molecular changes during the first week of human life follow a robust developmental trajectory. Nat. Commun. 2019;10:1092. doi: 10.1038/s41467-019-08794-x. PubMed DOI PMC

Bennike TB, et al. Preparing for Life: Plasma Proteome Changes and Immune System Development During the First Week of Human Life. Front. Immunol. 2020;11:578505. doi: 10.3389/fimmu.2020.578505. PubMed DOI PMC

McDavid A, et al. Aberrant newborn T cell and microbiota developmental trajectories predict respiratory compromise during infancy. iScience. 2022;25:104007. doi: 10.1016/j.isci.2022.104007. PubMed DOI PMC

Thiele EA. Managing epilepsy in tuberous sclerosis complex. J. Child Neurol. 2004;19:680–686. doi: 10.1177/08830738040190090801. PubMed DOI

Curatolo P, Verdecchia M, Bombardieri R. Vigabatrin for tuberous sclerosis complex. Brain Dev. 2001;23:649–653. doi: 10.1016/S0387-7604(01)00290-X. PubMed DOI

Krauss GL, Johnson MA, Miller NR. Vigabatrin-associated retinal cone system dysfunction: electroretinogram and ophthalmologic findings. Neurology. 1998;50:614–618. doi: 10.1212/WNL.50.3.614. PubMed DOI

Eke T, Talbot JF, Lawden MC. Severe persistent visual field constriction associated with vigabatrin. BMJ. 1997;314:180–181. doi: 10.1136/bmj.314.7075.180. PubMed DOI PMC

Kalviainen R, et al. Vigabatrin, a gabaergic antiepileptic drug, causes concentric visual field defects. Neurology. 1999;53:922–926. doi: 10.1212/WNL.53.5.922. PubMed DOI

Wild JM, Smith PEM, Knupp C. Objective Derivation of the Morphology and Staging of Visual Field Loss Associated with Long-Term Vigabatrin Therapy. CNS Drugs. 2019;33:817–829. doi: 10.1007/s40263-019-00634-2. PubMed DOI

Foroozan R. Vigabatrin: Lessons Learned From the United States Experience. J. Neuroophthalmol. 2018;38:442–450. doi: 10.1097/WNO.0000000000000609. PubMed DOI

Zhang H, et al. Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J. Clin. Invest. 2003;112:1223–1233. doi: 10.1172/JCI200317222. PubMed DOI PMC

Kobayashi K, Koide Y, Yoshino K, Shohmori T. [P-hydroxyphenylacetic acid concentrations in cerebrospinal fluid] No Shinkei. 1982;34:769–774. PubMed

Matsumoto H. Role of serum periostin in the management of asthma and its comorbidities. Respir. Investig. 2020;58:144–154. doi: 10.1016/j.resinv.2020.02.003. PubMed DOI

Cox J, et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011;10:1794–1805. doi: 10.1021/pr101065j. PubMed DOI

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Tyanova S, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Trapnell C, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012;7:562–578. doi: 10.1038/nprot.2012.016. PubMed DOI PMC

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Tiwari D, Peariso K, Gross C. MicroRNA-induced silencing in epilepsy: Opportunities and challenges for clinical application. Dev. Dyn. 2018;247:94–110. doi: 10.1002/dvdy.24582. PubMed DOI PMC

Trelinska J, et al. Abnormal serum microRNA profiles in tuberous sclerosis are normalized during treatment with everolimus: possible clinical implications. Orphanet. J. Rare Dis. 2016;11:129. doi: 10.1186/s13023-016-0512-1. PubMed DOI PMC

Kichukova TM, Popov NT, Ivanov IS, Vachev TI. Profiling of Circulating Serum MicroRNAs in Children with Autism Spectrum Disorder using Stem-loop qRT-PCR Assay. Folia Med (Plovdiv.) 2017;59:43–52. doi: 10.1515/folmed-2017-0009. PubMed DOI

Raoof R, et al. Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci. Rep. 2017;7:3328. doi: 10.1038/s41598-017-02969-6. PubMed DOI PMC

Hicks SD, Ignacio C, Gentile K, Middleton FA. Salivary miRNA profiles identify children with autism spectrum disorder, correlate with adaptive behavior, and implicate ASD candidate genes involved in neurodevelopment. BMC Pediatr. 2016;16:52. doi: 10.1186/s12887-016-0586-x. PubMed DOI PMC

Ramakers C, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 2003;339:62–66. doi: 10.1016/S0304-3940(02)01423-4. PubMed DOI

Yuan M, Breitkopf SB, Yang X, Asara JM. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 2012;7:872–881. doi: 10.1038/nprot.2012.024. PubMed DOI PMC

Durinck S, et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics. 2005;21:3439–3440. doi: 10.1093/bioinformatics/bti525. PubMed DOI

Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 2009;4:1184–1191. doi: 10.1038/nprot.2009.97. PubMed DOI PMC

Yu G, He QY. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol. Biosyst. 2016;12:477–479. doi: 10.1039/C5MB00663E. PubMed DOI

Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC

Wu T, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov. (Camb.) 2021;2:100141. PubMed PMC

Jassal B, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48:D498–D503. PubMed PMC

Glowacka-Walas J., Molecular EPISTOP, a comprehensive multi-omic analysis of blood from Tuberous Sclerosis Complex infants age birth to two years. https://github.com/JagGlo/molecular_EPISTOP; 10.5281/zenodo.8389826 (2023). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...