Vigabatrin-associated brain magnetic resonance imaging abnormalities and clinical symptoms in infants with tuberous sclerosis complex
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
602391-2
7th Framework Program of the European Commission within the Large-Scale Integrating Project EPISTOP
2019/ABM/01/00034
VIRAP
Polish Ministerial funds for science
S196/2022
Medical Research Agency, Poland, and a statutory
PubMed
39641935
PubMed Central
PMC11827727
DOI
10.1111/epi.18190
Knihovny.cz E-zdroje
- Klíčová slova
- brain MRI, epilepsy, tuberous sclerosis complex, vigabatrin,
- MeSH
- antikonvulziva * škodlivé účinky terapeutické užití MeSH
- kohortové studie MeSH
- kojenec MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozek * diagnostické zobrazování účinky léků MeSH
- předškolní dítě MeSH
- prospektivní studie MeSH
- registrace MeSH
- retrospektivní studie MeSH
- tuberózní skleróza * diagnostické zobrazování komplikace MeSH
- vigabatrin * terapeutické užití škodlivé účinky MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antikonvulziva * MeSH
- vigabatrin * MeSH
OBJECTIVE: Previous retrospective studies have reported vigabatrin-associated brain abnormalities on magnetic resonance imaging (VABAM), although clinical impact is unknown. We evaluated the association between vigabatrin and predefined brain magnetic resonance imaging (MRI) changes in a large homogenous tuberous sclerosis complex (TSC) cohort and assessed to what extent VABAM-related symptoms were reported in TSC infants. METHODS: The Dutch TSC Registry and the EPISTOP cohort provided retrospective and prospective data from 80 TSC patients treated with vigabatrin (VGB) before the age of 2 years and 23 TSC patients without VGB. Twenty-nine age-matched non-TSC epilepsy patients not receiving VGB were included as controls. VABAM, specified as T2/fluid-attenuated inversion recovery hyperintensity or diffusion restriction in predefined brain areas, were examined on brain MRI before, during, and after VGB, and once in the controls (at approximately age 2 years). Additionally, the presence of VABAM accompanying symptoms was evaluated. RESULTS: Prevalence of VABAM in VGB-treated TSC patients was 35.5%. VABAM-like abnormalities were observed in 13.5% of all patients without VGB. VGB was significantly associated with VABAM (risk ratio [RR] = 3.57, 95% confidence interval [CI] = 1.43-6.39), whereas TSC and refractory epilepsy were not. In all 13 VGB-treated patients with VABAM for whom posttreatment MRIs were available, VABAM entirely resolved after VGB discontinuation. The prevalence of symptoms was 11.7% in patients with VABAM or VABAM-like MRI abnormalities and 4.3% in those without, implicating no significant association (RR = 2.76, 95% CI = .68-8.77). SIGNIFICANCE: VABAM are common in VGB-treated TSC infants; however, VABAM-like abnormalities also occurred in children without either VGB or TSC. The cause of these MRI changes is unknown. Possible contributing factors are abnormal myelination, underlying etiology, recurrent seizures, and other antiseizure medication. Furthermore, the presence of VABAM (or VABAM-like abnormalities) did not appear to be associated with clinical symptoms. This study confirms that the well-known antiseizure effects of VGB outweigh the risk of VABAM and related symptoms.
Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
Child Neurology and Psychiatry Unit Systems Medicine Department Tor Vergata University Rome Italy
Department of Child Neurology Charité University Medicine Berlin Berlin Germany
Department of Pediatric Neurology Katholieke Universiteit Leuven Belgium
Department of Radiology University Medical Center Utrecht The Netherlands
Epilepsy Center Department of Pediatrics Medical University of Vienna Vienna Austria
Genetics Reproduction and Development Research Group Vrije Universiteit Brussel Brussels Belgium
Neurosciences Unit Queensland Children's Hospital South Brisbane Queensland Australia
Transition Technologies Advanced Solutions Children's Memorial Health Institute Warsaw Poland
Transition Technologies Science Children's Memorial Health Institute Warsaw Poland
Translational Neurosciences University of Antwerp Antwerp Belgium
Zobrazit více v PubMed
Salussolia CL, Klonowska K, Kwiatkowski DJ, Sahin M. Genetic etiologies, diagnosis, and treatment of tuberous sclerosis complex. Annu Rev Genomics Hum Genet. 2019;20:217–240. PubMed
Northrup H, Krueger DA, International tuberous sclerosis complex consensus G . Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol. 2013;49(4):243–254. PubMed PMC
Chu‐Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele EA. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia. 2010;51(7):1236–1241. PubMed PMC
Nabbout R, Belousova E, Benedik MP, Carter T, Cottin V, Curatolo P, et al. Epilepsy in tuberous sclerosis complex: findings from the TOSCA study. Epilepsia Open. 2019;4(1):73–84. PubMed PMC
Capal JK, Bernardino‐Cuesta B, Horn PS, Murray D, Byars AW, Bing NM, et al. Influence of seizures on early development in tuberous sclerosis complex. Epilepsy Behav. 2017;70(Pt A):245–252. PubMed PMC
Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 2015;14(7):733–745. PubMed
Koo B, Hwang PA, Logan WJ. Infantile spasms: outcome and prognostic factors of cryptogenic and symptomatic groups. Neurology. 1993;43(11):2322–2327. PubMed
Bombardieri R, Pinci M, Moavero R, Cerminara C, Curatolo P. Early control of seizures improves long‐term outcome in children with tuberous sclerosis complex. Eur J Paediatr Neurol. 2010;14(2):146–149. PubMed
Cusmai R, Moavero R, Bombardieri R, Vigevano F, Curatolo P. Long‐term neurological outcome in children with early‐onset epilepsy associated with tuberous sclerosis. Epilepsy Behav. 2011;22(4):735–739. PubMed
Jambaque I, Chiron C, Dumas C, Mumford J, Dulac O. Mental and behavioural outcome of infantile epilepsy treated by vigabatrin in tuberous sclerosis patients. Epilepsy Res. 2000;38(2–3):151–160. PubMed
Hancock E, Osborne JP. Vigabatrin in the treatment of infantile spasms in tuberous sclerosis: literature review. J Child Neurol. 1999;14(2):71–74. PubMed
Curatolo P, Verdecchia M, Bombardieri R. Vigabatrin for tuberous sclerosis complex. Brain and Development. 2001;23(7):649–653. PubMed
Curatolo P, Bombardieri R, Cerminara C. Current management for epilepsy in tuberous sclerosis complex. Curr Opin Neurol. 2006;19(2):119–123. PubMed
Hancock EC, Osborne JP, Edwards SW. Treatment of infantile spasms. Cochrane Database Syst Rev. 2013;6:CD001770. PubMed PMC
Zhang B, McDaniel SS, Rensing NR, Wong M. Vigabatrin inhibits seizures and mTOR pathway activation in a mouse model of tuberous sclerosis complex. PLoS One. 2013;8(2):e57445. PubMed PMC
Hussain SA, Tsao J, Li M, Schwarz MD, Zhou R, Wu JY, et al. Risk of vigabatrin‐associated brain abnormalities on MRI in the treatment of infantile spasms is dose‐dependent. Epilepsia. 2017;58(4):674–682. PubMed
Kotulska K, Kwiatkowski DJ, Curatolo P, Weschke B, Riney K, Jansen F, et al. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP trial. Ann Neurol. 2021;89(2):304–314. PubMed PMC
Bebin EM, Peters JM, Porter BE, McPherson TO, O'Kelley S, Sahin M, et al. Early treatment with vigabatrin does not decrease focal seizures or improve cognition in tuberous sclerosis complex: the PREVeNT trial. Ann Neurol. 2023;95:15–26. PubMed PMC
Specchio N, Nabbout R, Aronica E, Auvin S, Benvenuto A, de Palma L, et al. Updated clinical recommendations for the management of tuberous sclerosis complex associated epilepsy. Eur J Paediatr Neurol. 2023;47:25–34. PubMed
Biswas A, Yossofzai O, Vincent A, Go C, Widjaja E. Vigabatrin‐related adverse events for the treatment of epileptic spasms: systematic review and meta‐analysis. Expert Rev Neurother. 2020;20(12):1315–1324. PubMed
Desguerre I, Marti I, Valayannopoulos V, Bahi‐Buisson N, Dulac O, Plouin P, et al. Transient magnetic resonance diffusion abnormalities in west syndrome: the radiological expression of non‐convulsive status epilepticus? Dev Med Child Neurol. 2008;50(2):112–116. PubMed
Dracopoulos A, Widjaja E, Raybaud C, Westall CA, Snead OC 3rd. Vigabatrin‐associated reversible MRI signal changes in patients with infantile spasms. Epilepsia. 2010;51(7):1297–1304. PubMed
Harini C, Yuskaitis CJ, Libenson MH, Yang E, DeLeo M, Zhang B, et al. Hippocampal involvement with vigabatrin‐related MRI signal abnormalities in patients with infantile spasms: a novel finding. J Child Neurol. 2021;36(7):575–582. PubMed
Milh M, Villeneuve N, Chapon F, Pineau S, Lamoureux S, Livet MO, et al. Transient brain magnetic resonance imaging hyperintensity in basal ganglia and brain stem of epileptic infants treated with vigabatrin. J Child Neurol. 2009;24(3):305–315. PubMed
Pearl PL, Vezina LG, Saneto RP, McCarter R, Molloy‐Wells E, Heffron A, et al. Cerebral MRI abnormalities associated with vigabatrin therapy. Epilepsia. 2009;50(2):184–194. PubMed
Wheless JW, Carmant L, Bebin M, Conry JA, Chiron C, Elterman RD, et al. Magnetic resonance imaging abnormalities associated with vigabatrin in patients with epilepsy. Epilepsia. 2009;50(2):195–205. PubMed
Xu Y, Wan L, He W, Wang YY, Wang QH, Luo XM, et al. Risk of vigabatrin‐associated brain abnormalities on MRI: a retrospective and controlled study. Epilepsia. 2022;63(1):120–129. PubMed
Reyes Valenzuela G, Crespo A, Princich J, Fassulo L, Semprino M, Gallo A, et al. Vigabatrin‐associated brain abnormalities on MRI and other neurological symptoms in patients with west syndrome. Epilepsy Behav. 2022;129:108606. PubMed
Arezzo JC, Schroeder CE, Litwak MS, Steward DL. Effects of vigabatrin on evoked potentials in dogs. Br J Clin Pharmacol. 1989;27(Suppl 1):53S–60S. PubMed PMC
Butler WH. The neuropathology of vigabatrin. Epilepsia. 1989;30(Suppl 3):S15–S17. PubMed
Butler WH, Ford GP, Newberne JW. A study of the effects of vigabatrin on the central nervous system and retina of Sprague Dawley and lister‐hooded rats. Toxicol Pathol. 1987;15(2):143–148. PubMed
Gibson JP, Yarrington JT, Loudy DE, Gerbig CG, Hurst GH, Newberne JW. Chronic toxicity studies with vigabatrin, a GABA‐transaminase inhibitor. Toxicol Pathol. 1990;18(2):225–238. PubMed
Graham D. Neuropathology of vigabatrin. Br J Clin Pharmacol. 1989;27(Suppl 1):43S–45S. PubMed PMC
Jackson GD, Williams SR, Weller RO, van Bruggen N, Preece NE, Williams SC, et al. Vigabatrin‐induced lesions in the rat brain demonstrated by quantitative magnetic resonance imaging. Epilepsy Res. 1994;18(1):57–66. PubMed
Schroeder CE, Gibson JP, Yarrington J, Heydorn WE, Sussman NM, Arezzo JC. Effects of high‐dose gamma‐vinyl GABA (vigabatrin) administration on visual and somatosensory evoked potentials in dogs. Epilepsia. 1992;33(Suppl 5):S13–S25. PubMed
Weiss KL, Schroeder CE, Kastin SJ, Gibson JP, Yarrington JT, Heydorn WE, et al. MRI monitoring of vigabatrin‐induced intramyelinic edema in dogs. Neurology. 1994;44(10):1944–1949. PubMed
Yarrington JT, Gibson JP, Dillberger JE, Hurst G, Lippert B, Sussman NM, et al. Sequential neuropathology of dogs treated with vigabatrin, a GABA‐transaminase inhibitor. Toxicol Pathol. 1993;21(5):480–489. PubMed
Cohen JA, Fisher RS, Brigell MG, Peyster RG, Sze G. The potential for vigabatrin‐induced intramyelinic edema in humans. Epilepsia. 2000;41(2):148–157. PubMed
Peters JM, Sahin M, Vogel‐Farley VK, Jeste SS, Nelson CA 3rd, Gregas MC, et al. Loss of white matter microstructural integrity is associated with adverse neurological outcome in tuberous sclerosis complex. Acad Radiol. 2012;19(1):17–25. PubMed PMC
McKavanagh A, Kreilkamp BAK, Chen Y, Denby C, Bracewell M, Das K, et al. Altered structural brain networks in refractory and nonrefractory idiopathic generalized epilepsy. Brain Connect. 2022;12(6):549–560. PubMed
Jin B, Lv Z, Chen W, Wang C, Aung T, Chen W, et al. Perilesional white matter integrity in drug‐resistant epilepsy related to focal cortical dysplasia. Seizure. 2021;91:484–489. PubMed
Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20:37–46.
Grant RL. Converting an odds ratio to a range of plausible relative risks for better communication of research findings. BMJ. 2014;348:f7450. PubMed
Wan L, He W, Wang YY, Xu Y, Lu Q, Zhang MN, et al. Vigabatrin‐associated brain abnormalities on MRI in tuberous sclerosis complex patients with infantile spasms: are they preventable? Ther Adv Neurol Disord. 2022;15:17562864221138148. PubMed PMC