Study of Cytotoxic Effects of Benzonitrile Pesticides

. 2015 ; 2015 () : 381264. [epub] 20150803

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26339609

The benzonitrile herbicides bromoxynil, chloroxynil, dichlobenil, and ioxynil have been used actively worldwide to control weeds in agriculture since 1970s. Even though dichlobenil is prohibited in EU since 2008, studies addressing the fate of benzonitrile herbicides in the environment show that some metabolites of these herbicides are very persistent. We tested the cytotoxic effects of benzonitrile herbicides and their microbial metabolites using two human cell lines, Hep G2 and HEK293T, representing liver and kidneys as potential target organs in humans. The cell viability and proliferation were determined by MTT test and RTCA DP Analyzer system, respectively. The latter allows real-time monitoring of the effect of added substances. As the cytotoxic compounds could compromise cell membrane integrity, the lactate dehydrogenase test was performed as well. We observed high toxic effects of bromoxynil, chloroxynil, and ioxynil on both tested cell lines. In contrast, we determined only low inhibition of cell growth in presence of dichlobenil and microbial metabolites originating from the tested herbicides.

Zobrazit více v PubMed

Commission decision of 18 September 2008 concerning the non-inclusion of dichlobenil in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance. Official Journal of the European Union. 2008;(15)

European Commission. Review report for the active substance dichlobenil in support of a decision concerning the non-inclusion of dichlobenil in Annex I of Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance. European Commission, Brusel, Belgium, 2011.

Holtze M. S., Sørensen S. R., Sørensen J., Aamand J. Microbial degradation of the benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments—insights into degradation pathways, persistent metabolites and involved degrader organisms. Environmental Pollution. 2008;154(2):155–168. doi: 10.1016/j.envpol.2007.09.020. PubMed DOI

Hollingworth R. M. Handbook of Pesticide Toxicology. San Diego, Calif, USA: Academic Press; 2001. Inhibitors and uncouplers of mitochondrial oxidative phosphorylation; pp. 1169–1259.

Kerr M. W., Wain R. L. The uncoupling of oxidative phosphorylation in pea shoot mitochondria by 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) and related compounds. Annals of Applied Biology. 1964;54(3):441–446. doi: 10.1111/j.1744-7348.1964.tb01207.x. DOI

Giardi M. T., Marder J. B., Barber J. Herbicide binding to the isolated photosystem-II reaction center. Biochimica et Biophysica Acta. 1988;934(1):64–71. doi: 10.1016/0005-2728(88)90120-x. DOI

Giardi M. T., Rigoni F., Barbato R. Photosystem II core phosphorylation heterogeneity, differential herbicide binding, and regulation of electron transfer in photosystem II preparations from spinach. Plant Physiology. 1992;100(4):1948–1954. doi: 10.1104/pp.100.4.1948. PubMed DOI PMC

Fufezan C., Rutherford A. W., Krieger-Liszkay A. Singlet oxygen production in herbicide-treated photosystem II. FEBS Letters. 2002;532(3):407–410. doi: 10.1016/S0014-5793(02)03724-9. PubMed DOI

Alonso-Simón A., Encina A. E., García-Angulo P., Álvarez J. M., Acebes J. L. FTIR spectroscopy monitoring of cell wall modifications during the habituation of bean (Phaseolus vulgaris L.) callus cultures to dichlobenil. Plant Science. 2004;167(6):1273–1281. doi: 10.1016/j.plantsci.2004.06.025. DOI

United States Environmental Protection Agency. Registration Eligibility Decision (RED) Bromoxynil. Washington, DC, USA: United States Environmental Protection Agency; 1998.

U.S.EPA. Registration Eligibility Decision (RED) Dichlobenil. Washington, DC, USA: United States Environmental Protection Agency; 1998.

Lovecká P., Thimová M., Demnerová K. Potential endocrine activity of benzonitrile herbicides. Chemické Listy. 2014;108(5):471–474.

Morgado I., Hamers T., van der Ven L., Power D. M. Disruption of thyroid hormone binding to sea bream recombinant transthyretin by ioxinyl and polybrominated diphenyl ethers. Chemosphere. 2007;69(1):155–163. doi: 10.1016/j.chemosphere.2007.04.010. PubMed DOI

Nolte J., Heimlich F., Graß B., Zullei-Seibert N., Preuss G. Studies on the behaviour of dihalogenated hydroxybenzonitriles in water. Fresenius' Journal of Analytical Chemistry. 1995;351(1):88–91. doi: 10.1007/bf00324296. DOI

Millet M., Palm W.-U., Zetzsch C. Abiotic degradation of halobenzonitriles: investigation of the photolysis in solution. Ecotoxicology and Environmental Safety. 1998;41(1):44–50. doi: 10.1006/eesa.1998.1665. PubMed DOI

Malouki M. A., Zertal A., Lavédrine B., Sehili T., Boule P. Phototransformation of 3,5-dihalogeno-4-hydorxybenzonitriles (ioxynil and chloroxynil) in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry. 2004;168(1-2):15–22. doi: 10.1016/j.jphotochem.2004.05.007. DOI

Veselá A. B., Franc M., Pelantová H., et al. Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity. Biodegradation. 2010;21(5):761–770. doi: 10.1007/s10532-010-9341-4. PubMed DOI

Vokounová M., Vacek O., Kunc F. Effect of glucose and ribose on microbial degradation of the herbicide Bromoxynil continuously added to soil. Folia Microbiologica. 1992;37(2):128–132. doi: 10.1007/bf02836617. PubMed DOI

Golovleva L. A., Pertsova R. N., Kunc F., Vokounová M. Decomposition of the herbicide bromoxynil in soil and in bacterial cultures. Folia Microbiologica. 1988;33(6):491–499. doi: 10.1007/bf02925776. DOI

Simonsen A., Holtze M. S., Sørensen S. R., Sørensen S. J., Aamand J. Mineralisation of 2,6-dichlorobenzamide (BAM) in dichlobenil-exposed soils and isolation of a BAM-mineralising Aminobacter sp. Environmental Pollution. 2006;144(1):289–295. doi: 10.1016/j.envpol.2005.11.047. PubMed DOI

Clausen L., Arildskov N. P., Larsen F., Aamand J., Albrechtsen H.-J. Degradation of the herbicide dichlobenil and its metabolite BAM in soils and subsurface sediments. Journal of Contaminant Hydrology. 2007;89(3-4):157–173. doi: 10.1016/j.jconhyd.2006.04.004. PubMed DOI

Holtze M. S., Hansen H. C. B., Juhler R. K., Sørensen J., Aamand J. Microbial degradation pathways of the herbicide dichlobenil in soils with different history of dichlobenil-exposure. Environmental Pollution. 2007;148(1):343–351. doi: 10.1016/j.envpol.2006.10.028. PubMed DOI

Holtze M. S., Sørensen S. R., Sørensen J., Hansen H. C. B., Aamand J. Biostimulation and enrichment of 2,6-dichlorobenzamide-mineralising soil bacterial communities from dichlobenil-exposed soil. Soil Biology and Biochemistry. 2007;39(1):216–223. doi: 10.1016/j.soilbio.2006.07.009. DOI

Björklund E., Anskjær G. G., Hansen M., Styrishave B., Halling-Sørensen B. Analysis and environmental concentrations of the herbicide dichlobenil and its main metabolite 2,6-dichlorobenzamide (BAM): a review. Science of the Total Environment. 2011;409(12):2343–2356. doi: 10.1016/j.scitotenv.2011.02.008. PubMed DOI

Graß B., Mayer H., Nolte J., Preuß G., Zullei-Seibert N. Studies on the metabolism of hydroxybenzonitrile herbicides: I. Mass spectrometric identification. Pest Management Science. 2000;56(1):49–59. doi: 10.1002/(SICI)1526-4998(200001)56:1<49::AID-PS87>3.0.CO;2-Z. DOI

Hsu J. C., Camper N. D. Degradation of ioxynil to CO2 in soil. Pesticide Biochemistry and Physiology. 1975;5(1):47–51. doi: 10.1016/0048-3575(75)90042-5. DOI

Tuschl H., Schwab C. Cytotoxic effects of the herbicide 2,4-dichlorophenoxyacetic acid in HepG2 cells. Food and Chemical Toxicology. 2003;41(3):385–393. doi: 10.1016/s0278-6915(02)00238-7. PubMed DOI

Aston N. S., Watt N., Morton I. E., Tanner M. S., Evans G. S. Copper toxicity affects proliferation and viability of human hepatoma cells (HepG2 line) Human and Experimental Toxicology. 2000;19(6):367–376. doi: 10.1191/096032700678815963. PubMed DOI

Thomas P., Smart T. G. HEK293 cell line: a vehicle for the expression of recombinant proteins. Journal of Pharmacological and Toxicological Methods. 2005;51(3):187–200. doi: 10.1016/j.vascn.2004.08.014. PubMed DOI

Björklund E., Styrishave B., Anskjær G. G., Hansen M., Halling-Sørensen B. Dichlobenil and 2,6-dichlorobenzamide (BAM) in the environment: what are the risks to humans and biota? Science of the Total Environment. 2011;409(19):3732–3739. doi: 10.1016/j.scitotenv.2011.06.004. PubMed DOI

Degenhardt D., Cessna A. J., Raina R., Farenhorst A., Pennock D. J. Dissipation of six acid herbicides in water and sediment of two Canadian prairie wetlands. Environmental Toxicology and Chemistry. 2011;30(9):1982–1989. doi: 10.1002/etc.598. PubMed DOI

Silvers K. J., Eddy E. P., McCoy E. C., Rosenkranz H. S., Howard P. C. Pathways for the mutagenesis of 1-nitropyrene and dinitropyrenes in the human hepatoma cell loine HepG2. Environmental Health Perspectives. 1994;102(6):195–200. PubMed PMC

Miret S., de Groene E. M., Klaffke W. Comparison of in vitro assays of cellular toxicity in the human hepatic cell line HepG2. Journal of Biomolecular Screening. 2006;11(2):184–193. doi: 10.1177/1087057105283787. PubMed DOI

Patel R. M., Patel S. K. Cytotoxic activity of methanolic extract of Artocarpus heterophyllus against a549, hela and mcf-7 cell lines. Journal of Applied Pharmaceutical Science. 2011;1(7):167–171.

Urani C., Doldi M., Crippa S., Camatini M. Human-derived cell lines to study xenobiotic metabolism. Chemosphere. 1998;37(14-15):2785–2795. doi: 10.1016/S0045-6535(98)00321-X. PubMed DOI

Knasmüller S., Mersch-Sundermann V., Kevekordes S., et al. Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; Current state of knowledge. Toxicology. 2004;198(1–3):315–328. doi: 10.1016/j.tox.2004.02.008. PubMed DOI

Westerink W. M. A., Schoonen W. G. E. J. Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicology in Vitro. 2007;21(8):1581–1591. doi: 10.1016/j.tiv.2007.05.014. PubMed DOI

European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance dichlobenil. EFSA Journal. 2010;8(8):68–72.

European Commission. Review report for the active substance ioxynil. Finalised in the Standing Committee on the Food Chain. Annex I of Directive. 2004;(91/414/EEC) http://ec.europa.eu/food/plant/protection/evaluation/existactive/list_ioxynil.pdf.

Anderson J. R., Barnes W. S., Bedinger P. 2,6-Dichlorobenzonitrile, a cellulose biosynthesis inhibitor, affects morphology and structural integrity of petunia and lily pollen tubes. Journal of Plant Physiology. 2002;159(1):61–67. doi: 10.1078/0176-1617-00651. DOI

Proposal for a commission directive amending annex ii of the groundwater directive 2006/118/EC, 2006, http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006L0118&from=EN.

Chen X.-X., Li W.-M., Wu Q., Zhi Y.-N., Han L.-J. Bromoxynil residues and dissipation rates in maize crops and soil. Ecotoxicology and Environmental Safety. 2011;74(6):1659–1663. doi: 10.1016/j.ecoenv.2011.05.015. PubMed DOI

European Food Safety Authority. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for bromoxynil according to article 12 of regulation (EC) No 396/2005. EFSA Journal. 2012;10(8):p. 4.

Tsuda T., Nakamura T., Inoue A., Tanaka K. Pesticides in water, fish and shellfish from littoral area of lake biwa. Bulletin of Environmental Contamination and Toxicology. 2009;82(6):716–721. doi: 10.1007/s00128-009-9681-0. PubMed DOI

EPA-738-R-98-003, 1998, http://www.epa.gov/opp00001/reregistration/REDs/0263red.pdf.

Review report for the active substance ioxynil Finalised in the Standing Committee on the Food Chain, Annex I of Directive 91/414/EEC, 2004, http://ec.europa.eu/food/plant/protection/evaluation/existactive/list_ioxynil.pdf.

Review report for the active substance bromoxynil Finalised in the Standing Committee on the Food Chain, Annex I of Directive 91/414/EEC, 2004, http://ec.europa.eu/food/plant/protection/evaluation/existactive/list_bromoxynil.pdf.

Berling I., Buckley N. A., Mostafa A., et al. 2-Methyl-4-chlorophenoxyacetic acid and bromoxynil herbicide death. Clinical Toxicology. 2015;53(5):486–488. doi: 10.3109/15563650.2015.1030025. PubMed DOI

Vrkoslavová J., Stiborová H., Zemanová T., Macková M., Demnerová K. Bacterial degradation of polybrominated diphenylethers. Chemické Listy. 2011;105(9):654–660.

Gerecke A. C., Giger W., Hartmann P. C., et al. Anaerobic degradation of brominated flame retardants in sewage sludge. Chemosphere. 2006;64(2):311–317. doi: 10.1016/j.chemosphere.2005.12.016. PubMed DOI

Clausen L., Larsen F., Albrechtsen H.-J. Sorption of the herbicide dichlobenil and the metabolite 2,6-dichlorobenzamide on soils and aquifer sediments. Environmental Science and Technology. 2004;38(17):4510–4518. doi: 10.1021/es035263i. PubMed DOI

Heeney H. B., Warren V., Khan S. U. Effects of annual repeat applications of simazine, diuron, terbacil, and dichlobenil in a mature apple orchard. Canadian Journal of Plant Science. 1981;61(2):325–329. doi: 10.4141/cjps81-046. DOI

Van Leeuwen C. J., Maas H. The aquatic toxicity of 2,6-dichlorobenzamide (BAM), a degradation product of the herbicide dichlobenil. Environmental Pollution, Series A: Ecological and Biological. 1985;37(2):105–115. doi: 10.1016/0143-1471(85)90002-9. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...