The Strange Case of the Noncanonical Lamina: Deep Divisions in Nuclear Organisation?
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
- Klíčová slova
- CRWN proteins, Eukaryogenesis, Evolution, Gene expression, Lamina, Nuclear pore complex, Nucleus, Plants, Trypanosomes,
- MeSH
- jaderná lamina * metabolismus MeSH
- laminy * metabolismus genetika MeSH
- lidé MeSH
- rostliny metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- laminy * MeSH
The nuclear envelope is subtended in most eukaryotes by a proteinaceous lamina, a network that has been recognised since the 1950s. Originally considered as a simple structural support, it is now clear that the lamina can be highly dynamic and participates in a multitude of functions, including transcriptional and epigenetic regulation, definition of chromatin domains, genome stability and the positioning of nuclear pore complexes. The major protein components of the lamina in metazoans are ~60 kDa lamins, which assemble to form fibres and a network and are regulated by multiple mechanisms. Despite a broad taxonomic distribution beyond Metazoa, lamins are not universal and, in at least three major lineages, are absent, specifically fungi, plants and kinetoplastid protists. The latter two possess lineage-specific lamin analogues, the CRWN and NUP-1/NUP-2 proteins, respectively. Here we discuss and compare the kinetoplastid and plant lamina, their origins, components and functions and spectacular examples of convergent evolution.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
Laboratory of Cellular and Structural Biology The Rockefeller University New York NY USA
School of Life Sciences University of Dundee Dundee Scotland UK
Zobrazit více v PubMed
Miao L, Yin Z, Knoll AH, Qu Y, Zhu M (2024) 1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou formation in North China. Sci Adv 10:eadk3208 PubMed DOI PMC
Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, Field MC (2013) Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 248:373–396 DOI
Obado SO, Field MC, Rout MP (2017) Comparative interactomics provides evidence for functional specialization of the nuclear pore complex. Nucleus 8:340–352 PubMed DOI PMC
Koreny L, Field MC (2016) Ancient eukaryotic origin and evolutionary plasticity of nuclear lamina. Genome Biol Evol 8:2663–2671 PubMed DOI PMC
Aaronson RP, Blobel G (1975) Isolation of nuclear pore complexes in association with a lamina. Proc Natl Acad Sci USA 72:1007–1011 PubMed DOI PMC
McKeon FD, Kirschner MW, Caput D (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319(6053):463–468
Gerace L, Blobel G (1980) The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell 19:277–287 PubMed DOI
Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP (2002) Nuclear lamins: building blocks of nuclear architecture. Genes Dev 16:533–547 PubMed DOI
Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM, Goldman RD (2009) Introducing intermediate filaments: from discovery to disease. J Clin Invest 119:1763–1771 PubMed DOI PMC
Adam SA, Butin-Israeli V, Cleland MM, Shimi T, Goldman RD (2013) Disruption of Lamin B1 and Lamin B2 processing and localization by farnesyltransferase inhibitors. Nucleus 4:142–150 PubMed DOI PMC
Makarov AA, Zou J, Houston DR, Spanos C, Solovyova AS, Cardenal-Peralta C, Rappsilber J, Schirmer EC (2019) Lamin a molecular compression and sliding as mechanisms behind nucleoskeleton elasticity. Nat Commun 10:3056 PubMed DOI PMC
Ahn J, Jo I, Jeong S, Lee J, Ha NC (2023) Lamin filament assembly derived from the atomic structure of the antiparallel four-helix bundle. Mol Cells 46:309–318 PubMed DOI PMC
Grafe M, Batsios P, Meyer I, Lisin D, Baumann O, Goldberg MW, Gräf R (2019) Supramolecular structures of the Dictyostelium lamin NE81. Cells 8:162 PubMed DOI PMC
Choi J, Gehring M (2024) CRWN nuclear lamina components maintain the H3K27me3 landscape and promote successful reproduction in Arabidopsis. New Phytol 243:213–228 PubMed DOI PMC
Shin JY, Worman HJ (2022) Molecular pathology of laminopathies. Annu Rev Pathol 17:159–180 PubMed DOI
Wong X, Stewart CL (2020) The laminopathies and the insights they provide into the structural and functional organization of the nucleus. Annu Rev Genomics Hum Genet 21:263–288 PubMed DOI
Faure G, Jézéquel K, Roisné-Hamelin F, Bitard-Feildel T, Lamiable A, Marcand S, Callebaut I (2019) Discovery and evolution of new domains in yeast heterochromatin factor Sir4 and its partner Esc1. Genome Biol Evol 11:572–585 PubMed DOI PMC
Wang H, Dittmer TA, Richards EJ (2013) Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization BMC. Plant Biol 13:200
Choi J, Richards EJ (2020) The role of CRWN nuclear proteins in chromatin-based regulation of stress response genes. Plant Signal Behav 15:1694224 PubMed DOI
Yin C, Wang Y, Wang P, Chen G, Sun A, Fang Y (2024) The N-terminal coiled-coil domain of Arabidopsis CROWDED NUCLEI 1 is required for nuclear morphology maintenance. Planta 260:62 PubMed DOI
Sakamoto Y, Sato M, Sato Y, Harada A, Suzuki T, Goto C, Tamura K, Toyooka K, Kimura H, Ohkawa Y, Hara-Nishimura I, Takagi S, Matsunaga S (2020) Subnuclear gene positioning through lamina association affects copper tolerance. Nat Commun 11:5914 PubMed DOI PMC
Wang N, Wang Z, Tzourtzou S, Wang X, Bi X, Leimeister J, Xu L, Sakamoto T, Matsunaga S, Schaller A, Jiang H, Liu C (2023) The plant nuclear lamina disassembles to regulate genome folding in stress conditions. Nat Plants 9:1081–1093 PubMed DOI PMC
Choi J, Strickler SR, Richards EJ (2019) Loss of CRWN nuclear proteins induces cell death and salicylic acid defense signaling. Plant Physiol 179:1315–1329 PubMed DOI PMC
Han Z, Xiong D, Schneiter R, Tian C (2023) The function of plant PR1 and other members of the CAP protein superfamily in plant-pathogen interactions. Mol Plant Pathol 24:651–668 PubMed DOI PMC
Cao Y, Yan H, Sheng M, Liu Y, Yu X, Li Z, Xu W, Su Z (2024) Nuclear lamina component KAKU4 regulates chromatin states and transcriptional regulation in the Arabidopsis genome. BMC Biol 22:80 PubMed DOI PMC
Mermet S, Voisin M, Mordier J, Dubos T, Tutois S, Tuffery P, Baroux C, Tamura K, Probst AV, Vanrobays E, Tatout C (2023) Evolutionarily conserved protein motifs drive interactions between the plant nucleoskeleton and nuclear pores. Plant Cell 35:4284–4303 PubMed DOI PMC
Ciska M, Hikida R, Masuda K, Díaz M, de la Espina S (2019) Evolutionary history and structure of nuclear matrix constituent proteins, the plant analogues of lamins. J Exp Bot 70:2651–2664 PubMed DOI PMC
Faria J, Briggs EM, Black JA, McCulloch R (2022) Emergence and adaptation of the cellular machinery directing antigenic variation in the African trypanosome. Curr Opin Microbiol 70:102209 PubMed DOI
Padilla-Mejia NE, Koreny L, Holden J, Vancová M, Lukeš J, Zoltner M, Field MC (2021) A hub-and-spoke nuclear lamina architecture in trypanosomes. J Cell Sci 134:jcs251264 PubMed DOI PMC
Marcianò G, Ishii M, Nerusheva OO, Akiyoshi B (2021) Kinetoplastid kinetochore proteins KKT2 and KKT3 have unique centromere localization domains. J Cell Biol 220:e202101022 PubMed DOI PMC
Trenaman A, Tinti M, Wall RJ, Horn D (2024) Post-transcriptional reprogramming by thousands of mRNA untranslated regions in trypanosomes. Nat Commun 15:8113 PubMed DOI PMC
Rout MP, Field MC (2001) Isolation and characterization of subnuclear compartments from Trypanosoma brucei. identification of a major repetitive nuclear lamina component. J Biol Chem 276:38261–38271 PubMed DOI
Ogbadoyi E, Ersfeld K, Robinson D, Sherwin T, Gull K (2000) Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108:501–513 PubMed DOI
Ersfeld K, Gull K (1997) Partitioning of large and minichromosomes in Trypanosoma brucei. Science 276:611–614 PubMed DOI
DuBois KN, Alsford S, Holden JM, Buisson J, Swiderski M, Bart JM, Ratushny AV, Wan Y, Bastin P, Barry JD, Navarro M, Horn D, Aitchison JD, Rout MP, Field MC (2012) NUP-1 is a large coiled-coil nucleoskeletal protein in trypanosomes with Lamin-like functions. PLoS Biol 10:e1001287 PubMed DOI PMC
Field MC, Adung‘a V, Obado S, Chait BT, Rout MP (2012) Proteomics on the rims: insights into the biology of the nuclear envelope and flagellar pocket of trypanosomes. Parasitology 139:1158–1167 PubMed DOI
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, Bodenstein SW, Evans DA, Hung CC, O‘Neill M, Reiman D, Tunyasuvunakool K, Wu Z, Žemgulytė A, Arvaniti E, Beattie C, Bertolli O, Bridgland A, Cherepanov A, Congreve M, Cowen-Rivers AI, Cowie A, Figurnov M, Fuchs FB, Gladman H, Jain R, Khan YA, Low CMR, Perlin K, Potapenko A, Savy P, Singh S, Stecula A, Thillaisundaram A, Tong C, Yakneen S, Zhong ED, Zielinski M, Žídek A, Bapst V, Kohli P, Jaderberg M, Hassabis D, Jumper JM (2024) Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630:493–500 PubMed DOI PMC
Hoberman C (1991) Radial expansion/retraction truss structures. US patent 5,024,031 18 Jun 1991
Hammarton TC, Clark J, Douglas F, Boshart M, Mottram JC (2003) Stage-specific differences in cell cycle control in Trypanosoma brucei revealed by RNA interference of a mitotic cyclin. J Biol Chem 278:22877–22886 PubMed DOI
Müller LSM, Cosentino RO, Förstner KU, Guizetti J, Wedel C, Kaplan N, Janzen CJ, Arampatzi P, Vogel J, Steinbiss S, Otto TD, Saliba AE, Sebra RP, Siegel TN (2018) Genome organization and DNA accessibility control antigenic variation in trypanosomes. Nature 563:121–125 PubMed DOI PMC
Navarro M, Gull K (2001) A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature 414:759–763 PubMed DOI
Haenni S, Studer E, Burkard GS, Roditi I (2009) Bidirectional silencing of RNA polymerase I transcription by a strand switch region in Trypanosoma brucei. Nucleic Acids Res 37:5007–5018 PubMed DOI PMC
Maishman L, Obado SO, Alsford S, Bart JM, Chen WM, Ratushny AV, Navarro M, Horn D, Aitchison JD, Chait BT, Rout MP, Field MC (2016) Co-dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression. Nucleic Acids Res 44:10554–10570 PubMed DOI PMC
Obado SO, Brillantes M, Uryu K, Zhang W, Ketaren NE, Chait BT, Field MC, Rout MP (2016) Interactome mapping reveals the evolutionary history of the nuclear pore complex. PLoS Biol 14:e1002365 PubMed DOI PMC
Butterfield ER, Obado SO, Scutts SR, Zhang W, Chait BT, Rout MP, Field MC (2024) A lineage-specific protein network at the trypanosome nuclear envelope. Nucleus 15:2310452 PubMed DOI PMC
DeGrasse JA, DuBois KN, Devos D, Siegel TN, Sali A, Field MC, Rout MP, Chait BT (2009) Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Mol Cell Proteomics 8:2119–2130 PubMed DOI PMC
Urbaniak MD, Martin DM, Ferguson MA (2013) Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J Proteome Res 12:2233–2244 PubMed DOI PMC
Makarov A, Butenkov A, Lukeš J, Field MC (2025) Origins and evolution of the kinetoplastida nuclear lamina protein NUP-1. Nucleus. (in preparation)