Patterns and determinants of the global herbivorous mycobiome
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
I 3808
Austrian Science Fund FWF - Austria
PubMed
37365172
PubMed Central
PMC10293281
DOI
10.1038/s41467-023-39508-z
PII: 10.1038/s41467-023-39508-z
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- feces mikrobiologie MeSH
- fylogeneze MeSH
- mykobiom * genetika MeSH
- savci MeSH
- trávicí systém MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Despite their role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. Here, to examine global patterns and determinants of AGF diversity, we generate and analyze an amplicon dataset from 661 fecal samples from 34 mammalian species, 9 families, and 6 continents. We identify 56 novel genera, greatly expanding AGF diversity beyond current estimates (31 genera and candidate genera). Community structure analysis indicates that host phylogenetic affiliation, not domestication status and biogeography, shapes the community rather than. Fungal-host associations are stronger and more specific in hindgut fermenters than in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicate that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya) than those with preferences for foregut hosts (22-32 Mya). Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts.
AgResearch Ltd Grasslands Research Centre Palmerston North New Zealand
Anaerobic Fungi Network Kerkdriel Netherlands
Área de Microbiología Facultad de Ciencias Médicas Universidad Nacional de Cuyo Mendoza Argentina
Bavarian State Research Center for Agriculture Freising Germany
Bioenergy Group Agharkar Research Institute Pune India
Department of Biological Sciences University of Toronto Scarborough Toronto ON Canada
Department of Microbiology and Immunology Faculty of Pharmacy Cairo University Cairo Egypt
Department of Microbiology and Plant Pathology University of California Riverside Riverside CA USA
Department of Veterinary Medicine University of Sassari Sardinia Italy
Institute of Animal Physiology and Genetics Czech Academy of Sciences Prague Czechia
Langston University Langston OK USA
Oklahoma State University Department of Animal and Food Sciences Stillwater OK USA
Oklahoma State University Department of Microbiology and Molecular Genetics Stillwater OK USA
Universität Innsbruck Faculty of Biology Department of Microbiology Innsbruck Austria
University of Milan Dept of Agricultural and Environmental Sciences Milan Italy
Zobrazit více v PubMed
Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc. Natl Acad. Sci. 2018;115:6506–6511. doi: 10.1073/pnas.1711842115. PubMed DOI PMC
Zoghlami A, Paës G. Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Front Chem. 2019;7:874. doi: 10.3389/fchem.2019.00874. PubMed DOI PMC
Sues H-D, Reisz RR. Origins and early evolution of herbivory in tetrapods. Trend Ecol. Evol. 1998;13:141–145. doi: 10.1016/S0169-5347(97)01257-3. PubMed DOI
King G. Reptiles and herbivory. Chapman & Hall (1996).
Collinson ME, Hooker JJ. Fossil evidence of interactions between plants and plant-eating mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1991;333:197–207. doi: 10.1098/rstb.1991.0068. PubMed DOI
Hume ID, Warner ACI. Evolution of microbial digestion in mammals. In: Digestive physiology and metabolism in ruminants: Proceedings of the 5th International Symposium on Ruminant Physiology, held at Clermont — Ferrand, on 3rd–7th September, 1979 (eds. Ruckebusch Y, Thivend P). Springer Netherlands (1980).
Dearing MD, Weinstein SB. Metabolic enabling and detoxification by mammalian gut microbes. Ann. Rev. Microbiol. 2022;76:579–596. doi: 10.1146/annurev-micro-111121-085333. PubMed DOI
Mackie RI. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr. Comp. Biol. 2002;42:319–326. doi: 10.1093/icb/42.2.319. PubMed DOI
Orpin CG. Studies on the rumen flagellate Neocallimastix frontalis. J. Gen. Microbiol. 1975;91:249–262. doi: 10.1099/00221287-91-2-249. PubMed DOI
Orpin CG. Studies on the rumen flagellate Sphaeomonas communis. J. Gen. Microbiol. 1976;94:270–280. doi: 10.1099/00221287-94-2-270. PubMed DOI
Orpin CG. The occurence of chitin in the cell walls of the rumen organism Neocallimstix frontalis, Piromonas communis, and Sphaeromonas communis. J. Gen. Microbiol. 1977;99:215–218. doi: 10.1099/00221287-99-1-215. PubMed DOI
Orpin CG, Bountiff L. Zoospore chemotaxis in the rumen phycomycete Neocallimastix frontalis. Microbiology. 1978;104:113–122.
Edwards JE, et al. Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen. FEMS Microbiol Ecol. 2008;66:537–545. doi: 10.1111/j.1574-6941.2008.00563.x. PubMed DOI
Cao YC, Yang HJ, Zhang DF. Enzymatic characteristics of crude feruloyl and acetyl esterases of rumen fungus Neocallimastix sp. YAK11 isolated from yak (Bos grunniens) J. Anim. Physiol. Anim. Nutr. 2013;97:363–373. doi: 10.1111/j.1439-0396.2012.01281.x. PubMed DOI
Comlekcioglu U, Ozkose E, Yazdic FC, Akyol I, Ekinci MS. Polysaccharidase and glycosidase production of avicel grown rumen fungus Orpinomyces sp. GMLF5. Acta Biologica Hungarica. 2010;61:333–343. doi: 10.1556/ABiol.61.2010.3.9. PubMed DOI
Gruninger RJ, et al. Anaerobic fungi (phylum Neocallimastigomycota): Advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol. 2014;90:1–17. doi: 10.1111/1574-6941.12383. PubMed DOI
Lange L, Barrett K, Pilgaard B, Gleason F, Tsang A. Enzymes of early-diverging, zoosporic fungi. Appl Microbiol Biotechnol. 2019;103:6885–6902. doi: 10.1007/s00253-019-09983-w. PubMed DOI PMC
Morrison JM, Elshahed MS, Youssef N. A multifunctional GH39 glycoside hydrolase from the anaerobic gut fungus Orpinomyces sp. strain C1A. PeerJ. 2016;4:e2289. doi: 10.7717/peerj.2289. PubMed DOI PMC
Morrison JM, Elshahed MS, Youssef NH. Defined enzyme cocktail from the anaerobic fungus Orpinomyces sp. strain C1A effectively releases sugars from pretreated corn stover and switchgrass. Sci. Rep. 2016;6:29217. doi: 10.1038/srep29217. PubMed DOI PMC
Novotná Z, Procházka J, Šimůnek J, Fliegerová K. Xylanases of anaerobic fungus Anaeromyces mucronatus. Folia Microbiologica. 2010;55:363–367. doi: 10.1007/s12223-010-0059-9. PubMed DOI
O’Malley MA, Theodorou MK, Kaiser CA. Evaluating expression and catalytic activity of anaerobic fungal fibrolytic enzymes native to Piromyces sp E2 in Saccharomyces cerevisiae. Environ. Prog. Sustain Energy. 2012;31:37–46. doi: 10.1002/ep.10614. DOI
Steenbakkers PJM, et al. β-Glucosidase in cellulosome of the anaerobic fungus Piromyces sp. strain E2 is a family 3 glycoside hydrolase. Biochem J. 2003;370:963–970. doi: 10.1042/bj20021767. PubMed DOI PMC
Steenbakkers PJM, et al. A serpin in the cellulosome of the anaerobic fungus Piromyces sp. strain E2. Mycol. Res. 2008;112:999–1006. doi: 10.1016/j.mycres.2008.01.021. PubMed DOI
Cheng, Y. et al. The biotechnological potential of anaerobic fungi on fiber degradation and methane production. World J. Microbiol. Biotechnol.34, 155 (2018). PubMed
Swift CL, et al. Anaerobic gut fungi are an untapped reservoir of natural products. Proc. Natl Acad. Sci. 2021;118:e2019855118. doi: 10.1073/pnas.2019855118. PubMed DOI PMC
Hess M, et al. Anaerobic fungi: past, present, and future. Front Microbiol. 2020;11:584893. doi: 10.3389/fmicb.2020.584893. PubMed DOI PMC
Hanafy RA, Johnson B, Youssef NH, Elshahed MS. Assessing anaerobic gut fungal diversity in herbivores using D1/D2 large ribosomal subunit sequencing and multi-year isolation. Environ. Microbiol. 2020;22:3883–3908. doi: 10.1111/1462-2920.15164. PubMed DOI
Edwards JE, Hermes GDA, Kittelmann S, Nijsse B, Smidt H. Assessment of the accuracy of high-throughput sequencing of the ITS1 region of Neocallimastigomycota for community composition analysis. Front Micorobiol. 2019;10:2370. doi: 10.3389/fmicb.2019.02370. PubMed DOI PMC
Elshahed MS, et al. Characterization and rank assignment criteria for the anaerobic fungi (Neocallimastigomycota). Int. J. Syst. Evol. Microbiol.72, 10.1099/ijsem.1090.005449. (2022). PubMed
Matthee CA, Davis SK. Molecular insights into the evolution of the family Bovidae: a nuclear DNA perspective. Mol. Biol. Evol. 2001;18:1220–1230. doi: 10.1093/oxfordjournals.molbev.a003908. PubMed DOI
Hackmann TJ, Spain JN. Ruminant ecology and evolution: Perspectives useful to ruminant livestock research and production. J. Dairy Sci. 2010;93:1320–1334. doi: 10.3168/jds.2009-2071. PubMed DOI
Norris SL, Little HA, Ryding J, Raw Z. Global donkey and mule populations: Figures and trends. PLOS ONE. 2021;16:e0247830. doi: 10.1371/journal.pone.0247830. PubMed DOI PMC
Ning D, Deng Y, Tiedje JM, Zhou J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. 2019;116:16892–16898. doi: 10.1073/pnas.1904623116. PubMed DOI PMC
Stegen JC, Lin X, Fredrickson JK, Konopka AE. Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol. 2015;6:370. doi: 10.3389/fmicb.2015.00370. PubMed DOI PMC
Zhou J, Ning D. Stochastic community assembly: Does It matter in microbial ecology? Microbiol Mol. Biol. Rev. 2017;81:e00002–e00017. doi: 10.1128/MMBR.00002-17. PubMed DOI PMC
Murphy CL, et al. Horizontal gene transfer forged the evolution of anaerobic gut fungi into a phylogenetically distinct gut-dwelling fungal lineage. Appl Environ. Microbiol. 2019;85:e00988–00919. doi: 10.1128/AEM.00988-19. PubMed DOI PMC
Wang Y, et al. Molecular dating of the emergence of anaerobic rumen fungi and the impact of laterally acquired genes. mSystems. 2019;4:e00247–00219. doi: 10.1128/mSystems.00247-19. PubMed DOI PMC
Gruninger RJ, et al. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates. Front Microbiol. 2018;9:1581. doi: 10.3389/fmicb.2018.01581. PubMed DOI PMC
Haitjema CH, et al. A parts list for fungal cellulosomes revealed by comparative genomics. Nat. Microbiol. 2017;2:17087. doi: 10.1038/nmicrobiol.2017.87. PubMed DOI
Wilken SE, et al. Experimentally validated reconstruction and analysis of a genome-scale metabolic model of an anaerobic Neocallimastigomycota fungus. mSystems. 2021;16:e00002–e00021. PubMed PMC
Li Y, et al. Combined genomic, transcriptomic, proteomic, and physiological characterization of the growth of Pecoramyces sp. F1 in monoculture and co-culture with a syntrophic methanogen. Front Microbiol. 2019;10:435. doi: 10.3389/fmicb.2019.00435. PubMed DOI PMC
Hanafy RA, et al Phylogenomic analysis of the Neocallimastigomycota: proposal of Caecomycetaceae fam. nov., Piromycetaceae fam. nov., and emended description of the families Neocallimastigaceae and Anaeromycetaceae. Int. J. Syst. Evol. Microbiol.273, 10.1099/ijsem.1090.005735 (2023). PubMed
Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 2013;83:557–574. doi: 10.1890/12-2010.1. DOI
Goslee SC. Correlation analysis of dissimilarity matrices. Plant Ecol. 2010;206:279–286. doi: 10.1007/s11258-009-9641-0. DOI
Gower JC. Procrustes methods. WIREs Comput Stat. 2010;2:503–508. doi: 10.1002/wics.107. DOI
Mazel F, et al. Is host filtering the main driver of phylosymbiosis across the tree of life? mSystems. 2018;3:e00097–00018. doi: 10.1128/mSystems.00097-18. PubMed DOI PMC
Moran NA, Sloan DB. The hologenome concept: helpful or hollow? PLOS Biol. 2015;13:e1002311. doi: 10.1371/journal.pbio.1002311. PubMed DOI PMC
Shoemaker L, Clauset A. Body mass evolution and diversification within horses (family Equidae) Ecol. Lett. 2014;17:211–220. doi: 10.1111/ele.12221. PubMed DOI
Eizirik E, Murphy WJ, O’Brien SJ. Molecular dating and biogeography of the early placental mammal radiation. J. Hered. 2001;92:212–219. doi: 10.1093/jhered/92.2.212. PubMed DOI
Heckeberg NS. The systematics of the Cervidae: a total evidence approach. PeerJ. 2020;8:e8114. doi: 10.7717/peerj.8114. PubMed DOI PMC
Kartzinel TR, Hsing JC, Musili PM, Brown BRP, Pringle RM. Covariation of diet and gut microbiome in African megafauna. Proc. Natl Acad. Sci. 2019;116:23588–23593. doi: 10.1073/pnas.1905666116. PubMed DOI PMC
West PT, Probst AJ, Grigoriev IV, Thomas BC, Banfield JF. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res. 2018;28:569–580. doi: 10.1101/gr.228429.117. PubMed DOI PMC
Alneberg J, et al. Binning metagenomic contigs by coverage and composition. Nat. Methods. 2014;11:1144–1146. doi: 10.1038/nmeth.3103. PubMed DOI
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics. 2022;38:5315–5316. doi: 10.1093/bioinformatics/btac672. PubMed DOI PMC
Bradshaw AJ, Autumn KC, Rickart EA, Dentinger BTM. On the origin of feces: Fungal diversity, distribution, and conservation implications from feces of small mammals. Environ. DNA. 2022;4:608–626. doi: 10.1002/edn3.281. DOI
Gilbert JA, Jansson JK, Knight R. The Earth Microbiome project: successes and aspirations. BMC Biol. 2014;12:69. doi: 10.1186/s12915-014-0069-1. PubMed DOI PMC
Sunagawa S, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359. doi: 10.1126/science.1261359. PubMed DOI
Thompson LR, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–463. doi: 10.1038/nature24621. PubMed DOI PMC
Vasar M, et al. Global soil microbiomes: A new frontline of biome-ecology research. Glob. Ecol. Biogeogr. 2022;31:1120–1132. doi: 10.1111/geb.13487. DOI
Youngblut ND, et al. Vertebrate host phylogeny influences gut archaeal diversity. Nat. Microbiol. 2021;6:1443–1454. doi: 10.1038/s41564-021-00980-2. PubMed DOI PMC
Kittelmann S, et al. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS ONE. 2013;8:e47879. doi: 10.1371/journal.pone.0047879. PubMed DOI PMC
Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS. Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J. 2010;4:1225–1235. doi: 10.1038/ismej.2010.49. PubMed DOI
Lynch MD, Neufeld JD. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 2015;13:217–229. doi: 10.1038/nrmicro3400. PubMed DOI
Wang Y, et al. Quantifying the importance of the rare biosphere for microbial community response to organic pollutants in a freshwater ecosystem. Appl Environ. Microbiol. 2017;83:e03321–16. doi: 10.1128/AEM.03321-16. PubMed DOI PMC
Jousset A, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–862. doi: 10.1038/ismej.2016.174. PubMed DOI PMC
Coveley S, Elshahed MS, Youssef NH. Response of the rare biosphere to environmental stressors in a highly diverse ecosystem (Zodletone spring, OK, USA) PeerJ. 2015;3:e1182. doi: 10.7717/peerj.1182. PubMed DOI PMC
Chen Y-J, et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 2021;15:2986–3004. doi: 10.1038/s41396-021-00988-w. PubMed DOI PMC
Shade A, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio. 2014;5:e01371–01314. doi: 10.1128/mBio.01371-14. PubMed DOI PMC
Steele MA, Penner GB, Chaucheyras-Durand F, Guan LL. Development and physiology of the rumen and the lower gut: Targets for improving gut health. J. Dairy Sci. 2016;99:4955–4966. doi: 10.3168/jds.2015-10351. PubMed DOI
Davies D, Theodorou M, Lawrence M, Trinci A. Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces. J. Gen. Microbiol. 1993;139:1395–1400. doi: 10.1099/00221287-139-6-1395. PubMed DOI
Kittelmann S, Kirk MR, Jonker A, McCulloch A, Janssen PH. Buccal swabbing as a noninvasive method to determine bacterial, archaeal, and eukaryotic microbial community structures in the rumen. Appl Environ. Microbiol. 2015;81:7470–7483. doi: 10.1128/AEM.02385-15. PubMed DOI PMC
Tapio I, et al. Oral samples as non-invasive proxies for assessing the composition of the rumen microbial community. PLoS One. 2016;11:e0151220. doi: 10.1371/journal.pone.0151220. PubMed DOI PMC
Dougal K, et al. A comparison of the microbiome and the metabolome of different regions of the equine hindgut. FEMS Microbiol Ecol. 2012;82:642–652. doi: 10.1111/j.1574-6941.2012.01441.x. PubMed DOI
Mura E, et al. Anaerobic fungal communities differ along the horse digestive tract. Fungal Biol. 2019;123:240–246. doi: 10.1016/j.funbio.2018.12.004. PubMed DOI
Florou M, et al. Isolation of Mycobacterium avium subspecies paratuberculosis from non-ruminant wildlife living in the sheds and on the pastures of Greek sheep and goats. Epidemiol. Infect. 2008;136:644–652. doi: 10.1017/S095026880700893X. PubMed DOI PMC
Troxler J. Sheep and bovines on the same pasture. Rev. suisse d’agriculture (Switz.) 1998;30:53–56.
Hartmann E, Søndergaard E, Keeling LJ. Keeping horses in groups: A review. Appl Anim. Behav. Sci. 2012;136:77–87. doi: 10.1016/j.applanim.2011.10.004. DOI
Swift CL, et al. Cocultivation of anaerobic fungi with rumen bacteria establishes an antagonistic relationship. mBio. 2021;12:e01442–01421. doi: 10.1128/mBio.01442-21. PubMed DOI PMC
Brown, J. L. et al. Co‑cultivation of anaerobic fungi with Clostridium acetobutylicum bolsters butyrate and butanol production from cellulose and lignocellulose. J. Ind. Microbiol. Biotechnol.49, kuac024 (2022). PubMed PMC
Brown JL, et al. Co‑cultivation of the anaerobic fungus Caecomyces churrovis with Methanobacterium bryantii enhances transcription of carbohydrate binding modules, dockerins, and pyruvate formate lyases on specific substrates. Biotechnol. Biofuels. 2021;14:234. doi: 10.1186/s13068-021-02083-w. PubMed DOI PMC
Leggieri PA, Kerdman-Andrade C, Lankiewicz TS, Valentine MT, O’Malley MA. Non-destructive quantification of anaerobic gut fungi and methanogens in co-culture reveals increased fungal growth rate and changes in metabolic flux relative to mono-culture. Micro. Cell Fact. 2021;20:199. doi: 10.1186/s12934-021-01684-2. PubMed DOI PMC
Choi J, Kim S-H. A genome tree of life for the Fungi kingdom. Proc. Natl Acad. Sci. 2017;114:9391–9396. doi: 10.1073/pnas.1711939114. PubMed DOI PMC
Montoliu-Nerin M, et al. In-depth phylogenomic analysis of arbuscular mycorrhizal fungi based on a comprehensive set of de novo genome assemblies. Front Fung Biol.2, 10.3389/ffunb.2021.716385 (2021). PubMed PMC
Galindo LJ, López-García P, Torruella G, Karpov S, Moreira D. Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat. Commun. 2021;12:4973. doi: 10.1038/s41467-021-25308-w. PubMed DOI PMC
Li Y, et al. A genome-scale phylogeny of the kingdom Fungi. Curr. Biol. 2021;31:1653–1665.e1655. doi: 10.1016/j.cub.2021.01.074. PubMed DOI PMC
James TY, Stajich JE, Hittinger CT, Rokas A. Toward a fully resolved fungal tree of life. Ann. Rev. Microbiol. 2020;74:291–313. doi: 10.1146/annurev-micro-022020-051835. PubMed DOI
Lovegrove BG, Lobban KD, Levesque DL. Mammal survival at the Cretaceous-Palaeogene boundary: metabolic homeostasis in prolonged tropical hibernation in tenrecs. Proc. Biol. Sci. 2014;281:20141304. PubMed PMC
Rose KD. The beginning of the age of mammals. Johns Hopkins University Press (2006).
Youssef NH, et al. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl Environ. Microbiol. 2013;79:4620–4634. doi: 10.1128/AEM.00821-13. PubMed DOI PMC
Peng X, et al. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat. Microbiol. 2021;6:499–511. doi: 10.1038/s41564-020-00861-0. PubMed DOI PMC
Paul SS, Bu D, Xu J, Hyde KD, Yu Z. A phylogenetic census of global diversity of gut anaerobic fungi and a new taxonomic framework. Fung Div. 2018;89:253–266. doi: 10.1007/s13225-018-0396-6. DOI
Solomon KV, et al. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science. 2016;351:1192–1195. doi: 10.1126/science.aad1431. PubMed DOI PMC
Wang, Y. et al Comparative genomics and divergence time estimation of the anaerobic fungi in herbivorous mammals. mSystems4, e00247-19 (2019).
Piancone E, et al. Natural and after colon washing fecal samples: the two sides of the coin for investigating the human gut microbiome. Sci. Rep. 2022;12:17909. doi: 10.1038/s41598-022-20888-z. PubMed DOI PMC
Zoelzer F, Burger AL, Dierkes PW. Unraveling differences in fecal microbiota stability in mammals: from high variable carnivores and consistently stable herbivores. Anim. Microbiome. 2021;3:77. doi: 10.1186/s42523-021-00141-0. PubMed DOI PMC
O’ Donnell MM, Harris HMB, Ross RP, O’Toole PW. Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals. Microbiol Open. 2017;6:e00509. doi: 10.1002/mbo3.509. PubMed DOI PMC
Hagey JV, Laabs M, Maga EA, DePeters EJ. Rumen sampling methods bias bacterial communities observed. PLoS One. 2022;17:e0258176. doi: 10.1371/journal.pone.0258176. PubMed DOI PMC
Young D, et al. Simultaneous metabarcoding and quantification of Neocallimastigomycetes from environmental samples: Insights into community composition and novel lineages. Microorganisms. 2022;10:1749. doi: 10.3390/microorganisms10091749. PubMed DOI PMC
Nagler M, Podmirseg SM, Griffith GW, Insam H, Ascher-Jenull J. The use of extracellular DNA as a proxy for specific microbial activity. Appl Microbiol Biotechnol. 2018;102:2885–2898. doi: 10.1007/s00253-018-8786-y. PubMed DOI PMC
Calkins S, Elledge NC, Hanafy RA, Elshahed MS, Youssef N. A fast and reliable procedure for spore collection from anaerobic fungi: Application for RNA uptake and long-term storage of isolates. J. Microbiol. Methods. 2016;127:206–213. doi: 10.1016/j.mimet.2016.05.019. PubMed DOI
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–3152. doi: 10.1093/bioinformatics/bts565. PubMed DOI PMC
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021;38:4647–4654. doi: 10.1093/molbev/msab199. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2016;34:772–773. PubMed
Suchard MA, et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016. doi: 10.1093/ve/vey016. PubMed DOI PMC
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Wang Y, Qian PY. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One. 2009;4:e7401. doi: 10.1371/journal.pone.0007401. PubMed DOI PMC
Meili CH, et al. nohayoussef/AGF_Mammalian_Herbivores: V1.0 Zenodo10.5281/zenodo.8008252 (2023).
Legendre P, Lapointe FJ, Casgrain P. Modeling brain evolution from behavior: a permutational regression approach. Evolution. 1994;48:1487–1499. doi: 10.2307/2410243. PubMed DOI
Henske JK, et al. Transcriptomic characterization of Caecomyces churrovis: a novel, non-rhizoid-forming lignocellulolytic anaerobic fungus. Biotechnol. Biofuels. 2017;10:305. doi: 10.1186/s13068-017-0997-4. PubMed DOI PMC