Anion-cation contrast of small molecule solvation in salt solutions
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
35044392
PubMed Central
PMC8809138
DOI
10.1039/d1cp04129k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The contributions from anions and cations from salt are inseparable in their perturbation of molecular systems by experimental and computational methods, rendering it difficult to dissect the effects exerted by the anions and cations individually. Here we investigate the solvation of a small molecule, caffeine, and its perturbation by monovalent salts from various parts of the Hofmeister series. Using molecular dynamics and the energy-representation theory of solvation, we estimate the solvation free energy of caffeine and decompose it into the contributions from anions, cations, and water. We also decompose the contributions arising from the solute-solvent and solute-ions interactions and that from excluded volume, enabling us to pin-point the mechanism of salt. Anions and cations revealed high contrast in their perturbation of caffeine solvation, with the cations salting-in caffeine via binding to the polar ketone groups, while the anions were found to be salting-out via perturbations of water. In agreement with previous findings, the perturbation by salt is mostly anion dependent, with the magnitude of the excluded-volume effect found to be the governing mechanism. The free-energy decomposition as conducted in the present work can be useful to understand ion-specific effects and the associated Hofmeister series.
Division of Theoretical Chemistry Department of Chemistry Lund University Lund SE 221 00 Sweden
Lund Institute for Advanced Neutron and 10 ray Science Lund University Lund Sweden
Zobrazit více v PubMed
Ponte S. World Dev. 2002;30:1099–1122. doi: 10.1016/S0305-750X(02)00032-3. DOI
Poole R. L. Tordoff M. G. J. Caffeine Res. 2017;7:39–52. doi: 10.1089/jcr.2016.0030. PubMed DOI PMC
Mestdagh F., Glabasnia A. and Giuliano P., The Craft and Science of Coffee, Elsevier, 2017, pp. 355–380
Wang X. William J. Fu Y. Lim L.-T. Food Res. Int. 2016;89:797–805. doi: 10.1016/j.foodres.2016.09.031. PubMed DOI
Cordoba N. Pataquiva L. Osorio C. Moreno F. L. M. Ruiz R. Y. Sci. Rep. 2019;9:1–12. PubMed PMC
Shalmashi A. Golmohammad F. Lat. Am. Appl. Res. 2010;40:283–285.
Sanjeewa R. Weerasinghe S. THEOCHEM. 2010;944:116–123. doi: 10.1016/j.theochem.2009.12.027. DOI
Sanjeewa R. Weerasinghe S. Comput. Theor. Chem. 2011;966:140–148. doi: 10.1016/j.comptc.2011.02.027. DOI
Tavagnacco L. Schnupf U. Mason P. E. Saboungi M.-L. Cesàro A. Brady J. W. J. Phys. Chem. B. 2011;115:10957–10966. doi: 10.1021/jp2021352. PubMed DOI PMC
Tavagnacco L. Brady J. W. Bruni F. Callear S. Ricci M. A. Saboungi M. L. Cesàro A. J. Phys. Chem. B. 2015;119:13294–13301. doi: 10.1021/acs.jpcb.5b09204. PubMed DOI
Watson J. D. Crick F. H. C. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI
Tavagnacco L. Gerelli Y. Cesàro A. Brady J. W. J. Phys. Chem. B. 2016;120:9987–9996. doi: 10.1021/acs.jpcb.6b06980. PubMed DOI
Lilley T. H. Linsdell H. Maestre A. J. Chem. Soc., Faraday Trans. 1992;88:2865. doi: 10.1039/FT9928802865. DOI
Shimizu S. Food Funct. 2015;6:3228–3235. doi: 10.1039/C5FO00610D. PubMed DOI
Shumilin I. Allolio C. Harries D. J. Am. Chem. Soc. 2019;141:18056–18063. doi: 10.1021/jacs.9b07056. PubMed DOI
Rogers B. A. Thompson T. S. Zhang Y. J. Phys. Chem. B. 2016;120:12596–12603. doi: 10.1021/acs.jpcb.6b07760. PubMed DOI
Johnson N. O. Light T. P. MacDonald G. Zhang Y. J. Phys. Chem. B. 2017;121:1649–1659. doi: 10.1021/acs.jpcb.6b12150. PubMed DOI
Hofmeister F. Arch. Exp. Pathol. Pharmakol. 1888;24:247–260.
Kunz W. Henle J. Ninham B. Curr. Opin. Colloid Interface Sci. 2004;9:19–37. doi: 10.1016/j.cocis.2004.05.005. DOI
Omta A. W. Kropman M. F. Woutersen S. Bakker H. J. Science. 2003;301:347–349. doi: 10.1126/science.1084801. PubMed DOI
Stirnemann G. Wernersson E. Jungwirth P. Laage D. J. Am. Chem. Soc. 2013;135:11824–11831. doi: 10.1021/ja405201s. PubMed DOI
Okur H. I. Hladílková J. Rembert K. B. Cho Y. Heyda J. Dzubiella J. Cremer P. S. Jungwirth P. J. Phys. Chem. B. 2017;121:1997–2014. doi: 10.1021/acs.jpcb.6b10797. PubMed DOI
Rogers B. A. Okur H. I. Yan C. Yang T. Heyda J. Cremer P. S. Nat. Chem. 2022;14:40–45. doi: 10.1038/s41557-021-00805-z. PubMed DOI
Kang B. Tang H. Zhao Z. Song S. ACS Omega. 2020;5:6229–6239. doi: 10.1021/acsomega.0c00237. PubMed DOI PMC
Yin Z. Rajkovic I. Kubicek K. Quevedo W. Pietzsch A. Wernet P. Föhlisch A. Techert S. J. Phys. Chem. B. 2014;118:9398–9403. doi: 10.1021/jp504577a. PubMed DOI
Deyerle B. A. Zhang Y. Langmuir. 2011;27:9203–9210. doi: 10.1021/la201463g. PubMed DOI
Matubayasi N. Nakahara M. J. Chem. Phys. 2000;113:6070–6081. doi: 10.1063/1.1309013. DOI
Matubayasi N. Nakahara M. J. Chem. Phys. 2002;117:3605–3616. doi: 10.1063/1.1495850. DOI
Matubayasi N. Nakahara M. J. Chem. Phys. 2003;119:9686–9702. doi: 10.1063/1.1613938. DOI
Karino Y. Fedorov M. V. Matubayasi N. Chem. Phys. Lett. 2010;496:351–355. doi: 10.1016/j.cplett.2010.07.054. DOI
Eastman P. Swails J. Chodera J. D. McGibbon R. T. Zhao Y. Beauchamp K. A. Wang L.-P. Simmonett A. C. Harrigan M. P. Stern C. D. Wiewiora R. P. Brooks B. R. Pande V. S. PLoS Comput. Biol. 2017;13:e1005659. doi: 10.1371/journal.pcbi.1005659. PubMed DOI PMC
Rizzi A., Chodera J., Naden L., Beauchamp K., Grinaway P., Fass J., Wade A., Rustenburg B., Ross G. A., Krämer A., Macdonald H. B., Dominicrufa, Simmonett A., Swenson, Hb0402 D. W. and Silveira A., choderalab/openmmtools: 0.20.0 – Periodic nonequilibrium integrator, 2020, https://zenodo.org/record/596622
Shirts M. R. Klein C. Swails J. M. Yin J. Gilson M. K. Mobley D. L. Case D. A. Zhong E. D. J. Comput.-Aided Mol. Des. 2016;31:147–161. doi: 10.1007/s10822-016-9977-1. PubMed DOI PMC
Berendsen H. J. C. Grigera J. R. Straatsma T. P. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI
Heyda J. Vincent J. C. Tobias D. J. Dzubiella J. Jungwirth P. J. Phys. Chem. B. 2010;114:1213–1220. doi: 10.1021/jp910953w. PubMed DOI
Leimkuhler B. Matthews C. Proc. R. Soc. A. 2016;472:20160138. doi: 10.1098/rspa.2016.0138. PubMed DOI PMC
Chow K.-H. Ferguson D. M. Comput. Phys. Commun. 1995;91:283–289. doi: 10.1016/0010-4655(95)00059-O. DOI
Åqvist J. Wennerström P. Nervall M. Bjelic S. Brandsdal B. O. Chem. Phys. Lett. 2004;384:288–294. doi: 10.1016/j.cplett.2003.12.039. DOI
Martínez L. Andrade R. Birgin E. G. Martínez J. M. J. Comput. Chem. 2009;30:2157–2164. doi: 10.1002/jcc.21224. PubMed DOI
Liu D. C. Nocedal J. Math. Prog. 1989;45:503–528. doi: 10.1007/BF01589116. DOI
Darden T. York D. Pedersen L. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI
Sakuraba S. Matubayasi N. J. Comput. Chem. 2014;35:1592–1608. doi: 10.1002/jcc.23651. PubMed DOI
McGibbon R. T. Beauchamp K. A. Harrigan M. P. Klein C. Swails J. M. Hernández C. X. Schwantes C. R. Wang L.-P. Lane T. J. Pande V. S. Biophys. J. 2015;109:1528–1532. doi: 10.1016/j.bpj.2015.08.015. PubMed DOI PMC
Shirts M. R. Mobley D. L. Chodera J. D. Pande V. S. J. Phys. Chem. B. 2007;111:13052–13063. doi: 10.1021/jp0735987. PubMed DOI
Jorgensen W. L. Maxwell D. S. Tirado-Rives J. J. Am. Chem. Soc. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI
McDonald N. A. Jorgensen W. L. J. Phys. Chem. B. 1998;102:8049–8059. doi: 10.1021/jp981200o. DOI
Setschenow J. Z. Phys. Chem. 1889;4U:117–125. doi: 10.1515/zpch-1889-0409. DOI
Smith P. E. Mazo R. M. J. Phys. Chem. B. 2008;112:7875–7884. doi: 10.1021/jp712179w. PubMed DOI PMC
Efron B. Biometrika. 1981;68:589–599. doi: 10.1093/biomet/68.3.589. DOI
Ben-Naim A. Marcus Y. J. Chem. Phys. 1984;81:2016–2027. doi: 10.1063/1.447824. DOI
Ben-Naim A., Solvation Thermodynamics, Springer US, 1987
Ben-Amotz D. Raineri F. O. Stell G. J. Phys. Chem. B. 2005;109:6866–6878. doi: 10.1021/jp045090z. PubMed DOI
Rogers T. R. Wang F. J. Phys. Chem. B. 2020;124:840–847. doi: 10.1021/acs.jpcb.9b08965. PubMed DOI PMC
Cesaro A. Russo E. Crescenzi V. J. Phys. Chem. 1976;80:335–339. doi: 10.1021/j100544a026. DOI
Geballe M. T. Skillman A. G. Nicholls A. Guthrie J. P. Taylor P. J. J. Comput.-Aided Mol. Des. 2010;24:259–279. doi: 10.1007/s10822-010-9350-8. PubMed DOI
Kelly B. D. Smith W. R. J. Chem. Theory Comput. 2020;16:1146–1161. doi: 10.1021/acs.jctc.9b01139. PubMed DOI
Suzuoka D. Takahashi H. Ishiyama T. Morita A. J. Chem. Phys. 2012;137:214503. doi: 10.1063/1.4769075. PubMed DOI
Hummer G. Pratt L. R. García A. E. J. Chem. Phys. 1997;107:9275–9277. doi: 10.1063/1.475219. DOI
Lund M. Vrbka L. Jungwirth P. J. Am. Chem. Soc. 2008;130:11582–11583. doi: 10.1021/ja803274p. PubMed DOI
Freire M. G. Neves C. M. S. S. Silva A. M. S. Santos L. M. N. B. F. Marrucho I. M. Rebelo L. P. N. Shah J. K. Maginn E. J. Coutinho J. A. P. J. Phys. Chem. B. 2010;114:2004–2014. doi: 10.1021/jp9095634. PubMed DOI
Rembert K. B. Paterová J. Heyda J. Hilty C. Jungwirth P. Cremer P. S. J. Am. Chem. Soc. 2012;134:10039–10046. doi: 10.1021/ja301297g. PubMed DOI
Paterová J. Rembert K. B. Heyda J. Kurra Y. Okur H. I. Liu W. R. Hilty C. Cremer P. S. Jungwirth P. J. Phys. Chem. B. 2013;117:8150–8158. doi: 10.1021/jp405683s. PubMed DOI
Rembert K. B. Okur H. I. Hilty C. Cremer P. S. Langmuir. 2015;31:3459–3464. doi: 10.1021/acs.langmuir.5b00127. PubMed DOI
Vrbka L. Vondrasek J. Jagoda-Cwiklik B. Vacha R. Jungwirth P. Proc. Natl. Acad. Sci. U. S. A. 2006;103:15440–15444. doi: 10.1073/pnas.0606959103. PubMed DOI PMC
Hess B. van der Vegt N. F. A. Proc. Natl. Acad. Sci. U. S. A. 2009;106:13296–13300. doi: 10.1073/pnas.0902904106. PubMed DOI PMC
Kherb J. Flores S. C. Cremer P. S. J. Phys. Chem. B. 2012;116:7389–7397. doi: 10.1021/jp212243c. PubMed DOI
Li L. Fennell C. J. Dill K. A. J. Chem. Phys. 2014;141:22D518. doi: 10.1063/1.4900890. PubMed DOI PMC
Horinek D. Mamatkulov S. I. Netz R. R. J. Chem. Phys. 2009;130:124507. doi: 10.1063/1.3081142. PubMed DOI
Dill K. A. Truskett T. M. Vlachy V. Hribar-Lee B. Annu. Rev. Biophys. Biomol. Struct. 2005;34:173–199. doi: 10.1146/annurev.biophys.34.040204.144517. PubMed DOI
Krestov G. A., Thermodynamics of Solvation, Ellis Horwood, New York, 1991, p. 284
Hribar B. Southall N. T. Vlachy V. Dill K. A. J. Am. Chem. Soc. 2002;124:12302–12311. doi: 10.1021/ja026014h. PubMed DOI PMC
Carbonnaux C. Ries-Kautt M. Ducruix A. Protein Sci. 1995;4:2123–2128. doi: 10.1002/pro.5560041018. PubMed DOI PMC
Gibb B. C. Nat. Chem. 2019;11:963–965. doi: 10.1038/s41557-019-0355-1. PubMed DOI
Tanford C. J. Am. Chem. Soc. 1964;86:2050–2059. doi: 10.1021/ja01064a028. DOI
Tanford C., Advances in Protein Chemistry, Elsevier, 1970, pp. 1–95 PubMed
Chong S.-H. Ham S. Acc. Chem. Res. 2015;48:956–965. doi: 10.1021/acs.accounts.5b00032. PubMed DOI
Patel A. Malinovska L. Saha S. Wang J. Alberti S. Krishnan Y. Hyman A. A. Science. 2017;356:753–756. doi: 10.1126/science.aaf6846. PubMed DOI
Pasquier C. Vazdar M. Forsman J. Jungwirth P. Lund M. J. Phys. Chem. B. 2017;121:3000–3006. doi: 10.1021/acs.jpcb.7b01051. PubMed DOI
Masutani K. Yamamori Y. Kim K. Matubayasi N. J. Chem. Phys. 2019;150:145101. doi: 10.1063/1.5088395. PubMed DOI
Lenton S. Hervø-Hansen S. Popov A. M. Tully M. D. Lund M. Skepö M. Biomacromolecules. 2021;22:1532–1544. doi: 10.1021/acs.biomac.0c01765. PubMed DOI PMC
Cai Y. Hai Y. Ohashi M. Jamieson C. S. Garcia-Borras M. Houk K. N. Zhou J. Tang Y. Nat. Chem. 2019;11:812–820. doi: 10.1038/s41557-019-0294-x. PubMed DOI PMC
Kougentakis C. M. Skerritt L. Majumdar A. Schlessman J. L. García-Moreno B. Biorxiv. 2020:1–28.
Hervø-Hansen S. Højgaard C. Johansson K. E. Wang Y. Wahni K. Young D. Messens J. Teilum K. Lindorff-Larsen K. Winther J. R. J. Am. Chem. Soc. 2021;143:2500–2508. doi: 10.1021/jacs.0c10789. PubMed DOI
Ishii Y. Yamamoto N. Matubayasi N. Zhang B. W. Cui D. Levy R. M. J. Chem. Theory Comput. 2019;15:2896–2912. doi: 10.1021/acs.jctc.8b01309. PubMed DOI PMC
Yamada K. Matubayasi N. Macromolecules. 2020;53:775–788. doi: 10.1021/acs.macromol.9b01952. DOI
Salt Effects on Caffeine across Concentration Regimes