Anion-cation contrast of small molecule solvation in salt solutions

. 2022 Feb 02 ; 24 (5) : 3238-3249. [epub] 20220202

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35044392

The contributions from anions and cations from salt are inseparable in their perturbation of molecular systems by experimental and computational methods, rendering it difficult to dissect the effects exerted by the anions and cations individually. Here we investigate the solvation of a small molecule, caffeine, and its perturbation by monovalent salts from various parts of the Hofmeister series. Using molecular dynamics and the energy-representation theory of solvation, we estimate the solvation free energy of caffeine and decompose it into the contributions from anions, cations, and water. We also decompose the contributions arising from the solute-solvent and solute-ions interactions and that from excluded volume, enabling us to pin-point the mechanism of salt. Anions and cations revealed high contrast in their perturbation of caffeine solvation, with the cations salting-in caffeine via binding to the polar ketone groups, while the anions were found to be salting-out via perturbations of water. In agreement with previous findings, the perturbation by salt is mostly anion dependent, with the magnitude of the excluded-volume effect found to be the governing mechanism. The free-energy decomposition as conducted in the present work can be useful to understand ion-specific effects and the associated Hofmeister series.

Zobrazit více v PubMed

Ponte S. World Dev. 2002;30:1099–1122. doi: 10.1016/S0305-750X(02)00032-3. DOI

Poole R. L. Tordoff M. G. J. Caffeine Res. 2017;7:39–52. doi: 10.1089/jcr.2016.0030. PubMed DOI PMC

Mestdagh F., Glabasnia A. and Giuliano P., The Craft and Science of Coffee, Elsevier, 2017, pp. 355–380

Wang X. William J. Fu Y. Lim L.-T. Food Res. Int. 2016;89:797–805. doi: 10.1016/j.foodres.2016.09.031. PubMed DOI

Cordoba N. Pataquiva L. Osorio C. Moreno F. L. M. Ruiz R. Y. Sci. Rep. 2019;9:1–12. PubMed PMC

Shalmashi A. Golmohammad F. Lat. Am. Appl. Res. 2010;40:283–285.

Sanjeewa R. Weerasinghe S. THEOCHEM. 2010;944:116–123. doi: 10.1016/j.theochem.2009.12.027. DOI

Sanjeewa R. Weerasinghe S. Comput. Theor. Chem. 2011;966:140–148. doi: 10.1016/j.comptc.2011.02.027. DOI

Tavagnacco L. Schnupf U. Mason P. E. Saboungi M.-L. Cesàro A. Brady J. W. J. Phys. Chem. B. 2011;115:10957–10966. doi: 10.1021/jp2021352. PubMed DOI PMC

Tavagnacco L. Brady J. W. Bruni F. Callear S. Ricci M. A. Saboungi M. L. Cesàro A. J. Phys. Chem. B. 2015;119:13294–13301. doi: 10.1021/acs.jpcb.5b09204. PubMed DOI

Watson J. D. Crick F. H. C. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI

Tavagnacco L. Gerelli Y. Cesàro A. Brady J. W. J. Phys. Chem. B. 2016;120:9987–9996. doi: 10.1021/acs.jpcb.6b06980. PubMed DOI

Lilley T. H. Linsdell H. Maestre A. J. Chem. Soc., Faraday Trans. 1992;88:2865. doi: 10.1039/FT9928802865. DOI

Shimizu S. Food Funct. 2015;6:3228–3235. doi: 10.1039/C5FO00610D. PubMed DOI

Shumilin I. Allolio C. Harries D. J. Am. Chem. Soc. 2019;141:18056–18063. doi: 10.1021/jacs.9b07056. PubMed DOI

Rogers B. A. Thompson T. S. Zhang Y. J. Phys. Chem. B. 2016;120:12596–12603. doi: 10.1021/acs.jpcb.6b07760. PubMed DOI

Johnson N. O. Light T. P. MacDonald G. Zhang Y. J. Phys. Chem. B. 2017;121:1649–1659. doi: 10.1021/acs.jpcb.6b12150. PubMed DOI

Hofmeister F. Arch. Exp. Pathol. Pharmakol. 1888;24:247–260.

Kunz W. Henle J. Ninham B. Curr. Opin. Colloid Interface Sci. 2004;9:19–37. doi: 10.1016/j.cocis.2004.05.005. DOI

Omta A. W. Kropman M. F. Woutersen S. Bakker H. J. Science. 2003;301:347–349. doi: 10.1126/science.1084801. PubMed DOI

Stirnemann G. Wernersson E. Jungwirth P. Laage D. J. Am. Chem. Soc. 2013;135:11824–11831. doi: 10.1021/ja405201s. PubMed DOI

Okur H. I. Hladílková J. Rembert K. B. Cho Y. Heyda J. Dzubiella J. Cremer P. S. Jungwirth P. J. Phys. Chem. B. 2017;121:1997–2014. doi: 10.1021/acs.jpcb.6b10797. PubMed DOI

Rogers B. A. Okur H. I. Yan C. Yang T. Heyda J. Cremer P. S. Nat. Chem. 2022;14:40–45. doi: 10.1038/s41557-021-00805-z. PubMed DOI

Kang B. Tang H. Zhao Z. Song S. ACS Omega. 2020;5:6229–6239. doi: 10.1021/acsomega.0c00237. PubMed DOI PMC

Yin Z. Rajkovic I. Kubicek K. Quevedo W. Pietzsch A. Wernet P. Föhlisch A. Techert S. J. Phys. Chem. B. 2014;118:9398–9403. doi: 10.1021/jp504577a. PubMed DOI

Deyerle B. A. Zhang Y. Langmuir. 2011;27:9203–9210. doi: 10.1021/la201463g. PubMed DOI

Matubayasi N. Nakahara M. J. Chem. Phys. 2000;113:6070–6081. doi: 10.1063/1.1309013. DOI

Matubayasi N. Nakahara M. J. Chem. Phys. 2002;117:3605–3616. doi: 10.1063/1.1495850. DOI

Matubayasi N. Nakahara M. J. Chem. Phys. 2003;119:9686–9702. doi: 10.1063/1.1613938. DOI

Karino Y. Fedorov M. V. Matubayasi N. Chem. Phys. Lett. 2010;496:351–355. doi: 10.1016/j.cplett.2010.07.054. DOI

Eastman P. Swails J. Chodera J. D. McGibbon R. T. Zhao Y. Beauchamp K. A. Wang L.-P. Simmonett A. C. Harrigan M. P. Stern C. D. Wiewiora R. P. Brooks B. R. Pande V. S. PLoS Comput. Biol. 2017;13:e1005659. doi: 10.1371/journal.pcbi.1005659. PubMed DOI PMC

Rizzi A., Chodera J., Naden L., Beauchamp K., Grinaway P., Fass J., Wade A., Rustenburg B., Ross G. A., Krämer A., Macdonald H. B., Dominicrufa, Simmonett A., Swenson, Hb0402 D. W. and Silveira A., choderalab/openmmtools: 0.20.0 – Periodic nonequilibrium integrator, 2020, https://zenodo.org/record/596622

Shirts M. R. Klein C. Swails J. M. Yin J. Gilson M. K. Mobley D. L. Case D. A. Zhong E. D. J. Comput.-Aided Mol. Des. 2016;31:147–161. doi: 10.1007/s10822-016-9977-1. PubMed DOI PMC

Berendsen H. J. C. Grigera J. R. Straatsma T. P. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI

Heyda J. Vincent J. C. Tobias D. J. Dzubiella J. Jungwirth P. J. Phys. Chem. B. 2010;114:1213–1220. doi: 10.1021/jp910953w. PubMed DOI

Leimkuhler B. Matthews C. Proc. R. Soc. A. 2016;472:20160138. doi: 10.1098/rspa.2016.0138. PubMed DOI PMC

Chow K.-H. Ferguson D. M. Comput. Phys. Commun. 1995;91:283–289. doi: 10.1016/0010-4655(95)00059-O. DOI

Åqvist J. Wennerström P. Nervall M. Bjelic S. Brandsdal B. O. Chem. Phys. Lett. 2004;384:288–294. doi: 10.1016/j.cplett.2003.12.039. DOI

Martínez L. Andrade R. Birgin E. G. Martínez J. M. J. Comput. Chem. 2009;30:2157–2164. doi: 10.1002/jcc.21224. PubMed DOI

Liu D. C. Nocedal J. Math. Prog. 1989;45:503–528. doi: 10.1007/BF01589116. DOI

Darden T. York D. Pedersen L. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Sakuraba S. Matubayasi N. J. Comput. Chem. 2014;35:1592–1608. doi: 10.1002/jcc.23651. PubMed DOI

McGibbon R. T. Beauchamp K. A. Harrigan M. P. Klein C. Swails J. M. Hernández C. X. Schwantes C. R. Wang L.-P. Lane T. J. Pande V. S. Biophys. J. 2015;109:1528–1532. doi: 10.1016/j.bpj.2015.08.015. PubMed DOI PMC

Shirts M. R. Mobley D. L. Chodera J. D. Pande V. S. J. Phys. Chem. B. 2007;111:13052–13063. doi: 10.1021/jp0735987. PubMed DOI

Jorgensen W. L. Maxwell D. S. Tirado-Rives J. J. Am. Chem. Soc. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI

McDonald N. A. Jorgensen W. L. J. Phys. Chem. B. 1998;102:8049–8059. doi: 10.1021/jp981200o. DOI

Setschenow J. Z. Phys. Chem. 1889;4U:117–125. doi: 10.1515/zpch-1889-0409. DOI

Smith P. E. Mazo R. M. J. Phys. Chem. B. 2008;112:7875–7884. doi: 10.1021/jp712179w. PubMed DOI PMC

Efron B. Biometrika. 1981;68:589–599. doi: 10.1093/biomet/68.3.589. DOI

Ben-Naim A. Marcus Y. J. Chem. Phys. 1984;81:2016–2027. doi: 10.1063/1.447824. DOI

Ben-Naim A., Solvation Thermodynamics, Springer US, 1987

Ben-Amotz D. Raineri F. O. Stell G. J. Phys. Chem. B. 2005;109:6866–6878. doi: 10.1021/jp045090z. PubMed DOI

Rogers T. R. Wang F. J. Phys. Chem. B. 2020;124:840–847. doi: 10.1021/acs.jpcb.9b08965. PubMed DOI PMC

Cesaro A. Russo E. Crescenzi V. J. Phys. Chem. 1976;80:335–339. doi: 10.1021/j100544a026. DOI

Geballe M. T. Skillman A. G. Nicholls A. Guthrie J. P. Taylor P. J. J. Comput.-Aided Mol. Des. 2010;24:259–279. doi: 10.1007/s10822-010-9350-8. PubMed DOI

Kelly B. D. Smith W. R. J. Chem. Theory Comput. 2020;16:1146–1161. doi: 10.1021/acs.jctc.9b01139. PubMed DOI

Suzuoka D. Takahashi H. Ishiyama T. Morita A. J. Chem. Phys. 2012;137:214503. doi: 10.1063/1.4769075. PubMed DOI

Hummer G. Pratt L. R. García A. E. J. Chem. Phys. 1997;107:9275–9277. doi: 10.1063/1.475219. DOI

Lund M. Vrbka L. Jungwirth P. J. Am. Chem. Soc. 2008;130:11582–11583. doi: 10.1021/ja803274p. PubMed DOI

Freire M. G. Neves C. M. S. S. Silva A. M. S. Santos L. M. N. B. F. Marrucho I. M. Rebelo L. P. N. Shah J. K. Maginn E. J. Coutinho J. A. P. J. Phys. Chem. B. 2010;114:2004–2014. doi: 10.1021/jp9095634. PubMed DOI

Rembert K. B. Paterová J. Heyda J. Hilty C. Jungwirth P. Cremer P. S. J. Am. Chem. Soc. 2012;134:10039–10046. doi: 10.1021/ja301297g. PubMed DOI

Paterová J. Rembert K. B. Heyda J. Kurra Y. Okur H. I. Liu W. R. Hilty C. Cremer P. S. Jungwirth P. J. Phys. Chem. B. 2013;117:8150–8158. doi: 10.1021/jp405683s. PubMed DOI

Rembert K. B. Okur H. I. Hilty C. Cremer P. S. Langmuir. 2015;31:3459–3464. doi: 10.1021/acs.langmuir.5b00127. PubMed DOI

Vrbka L. Vondrasek J. Jagoda-Cwiklik B. Vacha R. Jungwirth P. Proc. Natl. Acad. Sci. U. S. A. 2006;103:15440–15444. doi: 10.1073/pnas.0606959103. PubMed DOI PMC

Hess B. van der Vegt N. F. A. Proc. Natl. Acad. Sci. U. S. A. 2009;106:13296–13300. doi: 10.1073/pnas.0902904106. PubMed DOI PMC

Kherb J. Flores S. C. Cremer P. S. J. Phys. Chem. B. 2012;116:7389–7397. doi: 10.1021/jp212243c. PubMed DOI

Li L. Fennell C. J. Dill K. A. J. Chem. Phys. 2014;141:22D518. doi: 10.1063/1.4900890. PubMed DOI PMC

Horinek D. Mamatkulov S. I. Netz R. R. J. Chem. Phys. 2009;130:124507. doi: 10.1063/1.3081142. PubMed DOI

Dill K. A. Truskett T. M. Vlachy V. Hribar-Lee B. Annu. Rev. Biophys. Biomol. Struct. 2005;34:173–199. doi: 10.1146/annurev.biophys.34.040204.144517. PubMed DOI

Krestov G. A., Thermodynamics of Solvation, Ellis Horwood, New York, 1991, p. 284

Hribar B. Southall N. T. Vlachy V. Dill K. A. J. Am. Chem. Soc. 2002;124:12302–12311. doi: 10.1021/ja026014h. PubMed DOI PMC

Carbonnaux C. Ries-Kautt M. Ducruix A. Protein Sci. 1995;4:2123–2128. doi: 10.1002/pro.5560041018. PubMed DOI PMC

Gibb B. C. Nat. Chem. 2019;11:963–965. doi: 10.1038/s41557-019-0355-1. PubMed DOI

Tanford C. J. Am. Chem. Soc. 1964;86:2050–2059. doi: 10.1021/ja01064a028. DOI

Tanford C., Advances in Protein Chemistry, Elsevier, 1970, pp. 1–95 PubMed

Chong S.-H. Ham S. Acc. Chem. Res. 2015;48:956–965. doi: 10.1021/acs.accounts.5b00032. PubMed DOI

Patel A. Malinovska L. Saha S. Wang J. Alberti S. Krishnan Y. Hyman A. A. Science. 2017;356:753–756. doi: 10.1126/science.aaf6846. PubMed DOI

Pasquier C. Vazdar M. Forsman J. Jungwirth P. Lund M. J. Phys. Chem. B. 2017;121:3000–3006. doi: 10.1021/acs.jpcb.7b01051. PubMed DOI

Masutani K. Yamamori Y. Kim K. Matubayasi N. J. Chem. Phys. 2019;150:145101. doi: 10.1063/1.5088395. PubMed DOI

Lenton S. Hervø-Hansen S. Popov A. M. Tully M. D. Lund M. Skepö M. Biomacromolecules. 2021;22:1532–1544. doi: 10.1021/acs.biomac.0c01765. PubMed DOI PMC

Cai Y. Hai Y. Ohashi M. Jamieson C. S. Garcia-Borras M. Houk K. N. Zhou J. Tang Y. Nat. Chem. 2019;11:812–820. doi: 10.1038/s41557-019-0294-x. PubMed DOI PMC

Kougentakis C. M. Skerritt L. Majumdar A. Schlessman J. L. García-Moreno B. Biorxiv. 2020:1–28.

Hervø-Hansen S. Højgaard C. Johansson K. E. Wang Y. Wahni K. Young D. Messens J. Teilum K. Lindorff-Larsen K. Winther J. R. J. Am. Chem. Soc. 2021;143:2500–2508. doi: 10.1021/jacs.0c10789. PubMed DOI

Ishii Y. Yamamoto N. Matubayasi N. Zhang B. W. Cui D. Levy R. M. J. Chem. Theory Comput. 2019;15:2896–2912. doi: 10.1021/acs.jctc.8b01309. PubMed DOI PMC

Yamada K. Matubayasi N. Macromolecules. 2020;53:775–788. doi: 10.1021/acs.macromol.9b01952. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Salt Effects on Caffeine across Concentration Regimes

. 2023 Dec 07 ; 127 (48) : 10253-10265. [epub] 20231121

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...