Quantification and rationalization of the higher affinity of sodium over potassium to protein surfaces
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17032760
PubMed Central
PMC2047604
DOI
10.1073/pnas.0606959103
PII: 0606959103
Knihovny.cz E-zdroje
- MeSH
- draslík metabolismus MeSH
- ionty chemie MeSH
- molekulární sekvence - údaje MeSH
- počítačová simulace MeSH
- povrchové vlastnosti MeSH
- proteiny chemie MeSH
- skot MeSH
- sodík chemie MeSH
- teoretické modely MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- draslík MeSH
- ionty MeSH
- proteiny MeSH
- sodík MeSH
For a series of different proteins, including a structural protein, enzyme, inhibitor, protein marker, and a charge-transfer system, we have quantified the higher affinity of Na+ over K+ to the protein surface by means of molecular dynamics simulations and conductivity measurements. Both approaches show that sodium binds at least twice as strongly to the protein surface than potassium does with this effect being present in all proteins under study. Different parts of the protein exterior are responsible to a varying degree for the higher surface affinity of sodium, with the charged carboxylic groups of aspartate and glutamate playing the most important role. Therefore, local ion pairing is the key to the surface preference of sodium over potassium, which is further demonstrated and quantified by simulations of glutamate and aspartate in the form of isolated amino acids as well as short oligopeptides. As a matter of fact, the effect is already present at the level of preferential pairing of the smallest carboxylate anions, formate or acetate, with Na+ versus K+, as shown by molecular dynamics and ab initio quantum chemical calculations. By quantifying and rationalizing the higher preference of sodium over potassium to protein surfaces, the present study opens a way to molecular understanding of many ion-specific (Hofmeister) phenomena involving protein interactions in salt solutions.
Zobrazit více v PubMed
Nightingale ER. J Phys Chem. 1959;63:1381–1387.
Hofmeister F. Arch Exp Pathol Pharmakol (Leipzig) 1888;24:247–260.
Inouye K, Kuzuya K, Tonomura B. J Biochem (Tokyo) 1998;123:847–852. PubMed
Wolff J, Sackett DL, Knipling L. Protein Sci. 1996;5:2020–2028. PubMed PMC
Vogel HJ, Drakenberg T, Forsen S. In: NMR of Newly Accessible Nuclei. Laszlo P, editor. Vol 1. New York: Academic; 1983. pp. 157–197.
Darnell J, Lodish H, Baltimore D. Molecular Cell Biology. New York: Scientific American Books; 1990.
Gumbart J, Wang Y, Aksimentiev A, Tajkhorshid E, Schulten K. Curr Opin Struct Biol. 2005;15:423–431. PubMed PMC
Ash WL, Zlomislic MR, Oloo EO, Tieleman DP. Biochim Biophys Acta. 2004;1666:158–189. PubMed
Chen H, Wu Y, Voth GA. Biophys J. 2006;90:L73–L75. PubMed PMC
Allen TW, Andersen OS, Roux B. Biophys J. 2006;90:3447–3468. PubMed PMC
Collins KD. Biophys J. 1997;72:65–76. PubMed PMC
Marcus Y. Ion Solvation. Chichester, UK: Wiley; 1985.
Omta AW, Kropman MJ, Woutersen S, Bakker HJ. Science. 2003;301:347–349. PubMed
Collins KD. Methods. 2004;34:300–311. PubMed
Collins KD. Biophys Chem. 2006;119:271–281. PubMed
Siu FM, Ma NL, Tsang CW. Chem Eur J. 2004;10:1966–1976. PubMed
Arakawa T, Timasheff SN. Biochemistry. 1982;21:6545–6552. PubMed
Lin TY, Timasheff SN. Protein Sci. 1996;5:372–381. PubMed PMC
Weissenborn PK, Pugh RJ. J Colloid Interface Sci. 1996;184:550–563. PubMed
Vrbka L, Jungwirth P, Bauduin P, Touraud D, Kunz W. J Phys Chem B. 2006;110:7036–7043. PubMed
Robertson TB. J Biol Chem. 1911;9:303–326.
Maldonado S, Irun MP, Campos LA, Rubio JA, Luquita A, Lostao A, Wang RJ, Garcia-Moreno B, Sancho J. Protein Sci. 2002;11:1260–1273. PubMed PMC
Dominy BN, Perl D, Schmid FX, Brooks CL. J Mol Biol. 2002;319:541–554. PubMed
Muegge I, Schweins T, Warshel A. Proteins Struct Funct Bioinfo. 1998;30:407–423. PubMed
Curtis RA, Ulrich J, Montaser A, Prausnitz JM, Blanch HW. Biotechnol Bioeng. 2002;79:367–380. PubMed
Pinna MC, Bauduin P, Tourand D, Monduzzi M, Ninham BW, Kunz W. J Phys Chem B. 2005;109:16511–16514. PubMed
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindaylov IN, Bourne PE. Nucleic Acids Res. 2000;28:235–242. PubMed PMC
Berendsen HJC, Grigera JR, Straatsma TP. J Phys Chem. 1987;91:6269–6271.
Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, et al. AMBER 8. San Francisco: Univ of California; 2004.
Wang JM, Cieplak P, Kollman PA. J Comput Chem. 2000;21:1049–1074.
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. J Chem Phys. 1995;103:8577–8593.
Ryckaert J-P, Ciccotti G, Berendsen HJC. J Comput Phys. 1977;23:327–341.
Dunning TH., Jr J Chem Phys. 1989;90:1007–1024.
Barone V, Cossi M. J Phys Chem A. 1998;102:1995–2001.
Cossi M, Rega N, Scalmani G, Barone V. J Comp Chem. 2003;24:669–681. PubMed
Schmid R, Miah AM, Sapunov VN. Phys Chem Chem Phys. 2000;2:97–102.
Anion-cation contrast of small molecule solvation in salt solutions