Specific ion effects at protein surfaces: a molecular dynamics study of bovine pancreatic trypsin inhibitor and horseradish peroxidase in selected salt solutions
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16571019
DOI
10.1021/jp0567624
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny chemie MeSH
- aprotinin chemie metabolismus MeSH
- chlorid sodný chemie farmakologie MeSH
- cholin chemie farmakologie MeSH
- ionty chemie farmakologie MeSH
- křenová peroxidasa chemie metabolismus MeSH
- molekulární modely MeSH
- počítačová simulace MeSH
- povrchové vlastnosti MeSH
- roztoky MeSH
- sírany chemie farmakologie MeSH
- skot MeSH
- soli chemie farmakologie MeSH
- terciární struktura proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- aprotinin MeSH
- chlorid sodný MeSH
- cholin MeSH
- ionty MeSH
- křenová peroxidasa MeSH
- roztoky MeSH
- sírany MeSH
- sodium sulfate MeSH Prohlížeč
- soli MeSH
The distribution of sodium, choline, sulfate, and chloride ions around two proteins, horseradish peroxidase (HRP) and bovine pancreatic trypsin inhibitor (BPTI), is investigated by means of molecular dynamics simulations with the aim to elucidate ion adsorption at the protein surface. Although the two proteins under investigation are very different from each other, the ion distributions around them are remarkably similar. Sulfate is always strongly attached to the proteins, choline shows a significant, but unspecific, propensity for the protein surfaces, and sodium ions have a weak surface affinity, while chloride has virtually no preference for the protein surface. In mixtures of all four ion species in protein solutions, the resulting distributions are almost a superposition of the distributions of sodium sulfate and choline chloride, except that sodium partially replaces choline close to the proteins. The present simulations support a picture of ions interacting with individual ionic and polar amino acid groups rather than with an averaged protein surface. The results thus show how subtle the so-called Hofmeister and electroselectivity effects are in salt solution of proteins, making all simplified interaction models questionable.
Citace poskytuje Crossref.org