BRAT1 links Integrator and defective RNA processing with neurodegeneration

. 2022 Aug 26 ; 13 (1) : 5026. [epub] 20220826

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36028512

Grantová podpora
MR/W024128/1 Medical Research Council - United Kingdom
MR/P010121/1 Medical Research Council - United Kingdom

Odkazy

PubMed 36028512
PubMed Central PMC9418311
DOI 10.1038/s41467-022-32763-6
PII: 10.1038/s41467-022-32763-6
Knihovny.cz E-zdroje

Mutations in BRAT1, encoding BRCA1-associated ATM activator 1, have been associated with neurodevelopmental and neurodegenerative disorders characterized by heterogeneous phenotypes with varying levels of clinical severity. However, the underlying molecular mechanisms of disease pathology remain poorly understood. Here, we show that BRAT1 tightly interacts with INTS9/INTS11 subunits of the Integrator complex that processes 3' ends of various noncoding RNAs and pre-mRNAs. We find that Integrator functions are disrupted by BRAT1 deletion. In particular, defects in BRAT1 impede proper 3' end processing of UsnRNAs and snoRNAs, replication-dependent histone pre-mRNA processing, and alter the expression of protein-coding genes. Importantly, impairments in Integrator function are also evident in patient-derived cells from BRAT1 related neurological disease. Collectively, our data suggest that defects in BRAT1 interfere with proper Integrator functions, leading to incorrect expression of RNAs and proteins, resulting in neurodegeneration.

Zobrazit více v PubMed

Aglipay JA, Martin SA, Tawara H, Lee SW, Ouchi T. ATM activation by ionizing radiation requires BRCA1-associated BAAT1. J. Biol. Chem. 2006;281:9710–9718. doi: 10.1074/jbc.M510332200. PubMed DOI

So EY, Ouchi T. Functional interaction of BRCA1/ATM-associated BAAT1 with the DNA-PK catalytic subunit. Exp. Ther. Med. 2011;2:443–447. doi: 10.3892/etm.2011.232. PubMed DOI PMC

So, E. Y. & Ouchi, T. The potential role of BRCA1-associated ATM activator-1 (BRAT1) in regulation of mTOR. J. Cancer Biol. Res.1, 1001 (2013). PubMed PMC

Puffenberger EG, et al. Genetic mapping and exome sequencing identify variants associated with five novel diseases. PLoS ONE. 2012;7:e28936. doi: 10.1371/journal.pone.0028936. PubMed DOI PMC

Straussberg R, et al. Lethal neonatal rigidity and multifocal seizure syndrome–report of another family with a BRAT1 mutation. Eur. J. Paediatr. Neurol. 2015;19:240–242. doi: 10.1016/j.ejpn.2014.11.004. PubMed DOI

Li, W. et al. Novel variant in BRAT1 with the lethal neonatal rigidity and multifocal seizure syndrome. Pediatr. Res. 10.1038/s41390-021-01468-9 (2021). PubMed

Hanes I, Kozenko M, Callen DJ. Lethal neonatal rigidity and multifocal seizure syndrome–a misnamed disorder? Pediatr. Neurol. 2015;53:535–540. doi: 10.1016/j.pediatrneurol.2015.09.002. PubMed DOI

Mundy SA, Krock BL, Mao R, Shen JJ. BRAT1-related disease–identification of a patient without early lethality. Am. J. Med. Genet. A. 2016;170:699–702. doi: 10.1002/ajmg.a.37434. PubMed DOI

Scheffer IE, et al. BRAT1 encephalopathy: a recessive cause of epilepsy of infancy with migrating focal seizures. Dev. Med. Child. Neurol. 2020;62:1096–1099. doi: 10.1111/dmcn.14428. PubMed DOI

Valence S, et al. Exome sequencing in congenital ataxia identifies two new candidate genes and highlights a pathophysiological link between some congenital ataxias and early infantile epileptic encephalopathies. Genet. Med. 2019;21:553–563. doi: 10.1038/s41436-018-0089-2. PubMed DOI

Mahjoub A, et al. Homozygous pathogenic variant in BRAT1 associated with nonprogressive cerebellar ataxia. Neurol. Genet. 2019;5:e359. doi: 10.1212/NXG.0000000000000359. PubMed DOI PMC

Nuovo, S. et al. Clinical variability at the mild end of BRAT1-related spectrum: evidence from two families with genotype-phenotype discordance. Hum. Mutat. 10.1002/humu.24293 (2021). PubMed

Oegema R, et al. Human mutations in integrator complex subunits link transcriptome integrity to brain development. PLoS Genet. 2017;13:e1006809. doi: 10.1371/journal.pgen.1006809. PubMed DOI PMC

Krall M, et al. Biallelic sequence variants in INTS1 in patients with developmental delays, cataracts, and craniofacial anomalies. Eur. J. Hum. Genet. 2019;27:582–593. doi: 10.1038/s41431-018-0298-9. PubMed DOI PMC

Baillat D, et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell. 2005;123:265–276. doi: 10.1016/j.cell.2005.08.019. PubMed DOI

Shah N, et al. Tyrosine-1 of RNA polymerase II CTD controls global termination of gene transcription in mammals. Mol. Cell. 2018;69:48–61 e46. doi: 10.1016/j.molcel.2017.12.009. PubMed DOI

Chen J, et al. An RNAi screen identifies additional members of the Drosophila Integrator complex and a requirement for cyclin C/Cdk8 in snRNA 3’-end formation. RNA. 2012;18:2148–2156. doi: 10.1261/rna.035725.112. PubMed DOI PMC

Zheng, H. et al. Identification of Integrator-PP2A complex (INTAC), an RNA polymerase II phosphatase. Science370, 10.1126/science.abb5872 (2020). PubMed

Pfleiderer, M. M. & Galej, W. P. Structure of the catalytic core of the integrator complex. Mol. Cell, 10.1016/j.molcel.2021.01.005 (2021). PubMed PMC

Albrecht TR, Wagner EJ. snRNA 3’ end formation requires heterodimeric association of integrator subunits. Mol. Cell Biol. 2012;32:1112–1123. doi: 10.1128/MCB.06511-11. PubMed DOI PMC

Wu Y, Albrecht TR, Baillat D, Wagner EJ, Tong L. Molecular basis for the interaction between Integrator subunits IntS9 and IntS11 and its functional importance. Proc. Natl Acad. Sci. USA. 2017;114:4394–4399. doi: 10.1073/pnas.1616605114. PubMed DOI PMC

Mandel CR, et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3’-end-processing endonuclease. Nature. 2006;444:953–956. doi: 10.1038/nature05363. PubMed DOI PMC

Albrecht TR, et al. Integrator subunit 4 is a ‘Symplekin-like’ scaffold that associates with INTS9/11 to form the Integrator cleavage module. Nucleic Acids Res. 2018;46:4241–4255. doi: 10.1093/nar/gky100. PubMed DOI PMC

Lai F, Gardini A, Zhang A, Shiekhattar R. Integrator mediates the biogenesis of enhancer RNAs. Nature. 2015;525:399–403. doi: 10.1038/nature14906. PubMed DOI PMC

Barra J, et al. Integrator restrains paraspeckles assembly by promoting isoform switching of the lncRNA NEAT1. Sci. Adv. 2020;6:eaaz9072. doi: 10.1126/sciadv.aaz9072. PubMed DOI PMC

Nojima T, et al. Deregulated expression of mammalian lncRNA through loss of SPT6 induces R-Loop formation, replication stress, and cellular senescence. Mol. Cell. 2018;72:970–984.e977. doi: 10.1016/j.molcel.2018.10.011. PubMed DOI PMC

Rubtsova MP, et al. Integrator is a key component of human telomerase RNA biogenesis. Sci. Rep. 2019;9:1701. doi: 10.1038/s41598-018-38297-6. PubMed DOI PMC

Stadelmayer B, et al. Integrator complex regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes. Nat. Commun. 2014;5:5531. doi: 10.1038/ncomms6531. PubMed DOI PMC

Beckedorff F, et al. The human integrator complex facilitates transcriptional elongation by endonucleolytic cleavage of nascent transcripts. Cell Rep. 2020;32:107917. doi: 10.1016/j.celrep.2020.107917. PubMed DOI PMC

Elrod ND, et al. The integrator complex attenuates promoter-proximal transcription at protein-coding genes. Mol. Cell. 2019;76:738–752.e737. doi: 10.1016/j.molcel.2019.10.034. PubMed DOI PMC

Tatomer DC, et al. The Integrator complex cleaves nascent mRNAs to attenuate transcription. Genes Dev. 2019;33:1525–1538. doi: 10.1101/gad.330167.119. PubMed DOI PMC

Lykke-Andersen, S. et al. Integrator is a genome-wide attenuator of non-productive transcription. Mol. Cell, 10.1016/j.molcel.2020.12.014 (2020). PubMed

Ezzeddine N, et al. A subset of Drosophila integrator proteins is essential for efficient U7 snRNA and spliceosomal snRNA 3’-end formation. Mol. Cell Biol. 2011;31:328–341. doi: 10.1128/MCB.00943-10. PubMed DOI PMC

Sabath K, et al. INTS10-INTS13-INTS14 form a functional module of Integrator that binds nucleic acids and the cleavage module. Nat. Commun. 2020;11:3422. doi: 10.1038/s41467-020-17232-2. PubMed DOI PMC

Tilley FC, et al. Disruption of pathways regulated by Integrator complex in Galloway-Mowat syndrome due to WDR73 mutations. Sci. Rep. 2021;11:5388. doi: 10.1038/s41598-021-84472-7. PubMed DOI PMC

Stanek D. Cajal bodies and snRNPs-friends with benefits. RNA Biol. 2017;14:671–679. doi: 10.1080/15476286.2016.1231359. PubMed DOI PMC

Takata H, Nishijima H, Maeshima K, Shibahara K. The integrator complex is required for integrity of Cajal bodies. J. Cell Sci. 2012;125:166–175. doi: 10.1242/jcs.090837. PubMed DOI

Sun Y, et al. Structure of an active human histone pre-mRNA 3’-end processing machinery. Science. 2020;367:700–703. doi: 10.1126/science.aaz7758. PubMed DOI PMC

Marzluff WF, Wagner EJ, Duronio RJ. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 2008;9:843–854. doi: 10.1038/nrg2438. PubMed DOI PMC

Narita T, et al. NELF interacts with CBC and participates in 3’ end processing of replication-dependent histone mRNAs. Mol. Cell. 2007;26:349–365. doi: 10.1016/j.molcel.2007.04.011. PubMed DOI

Pirngruber J, Shchebet A, Johnsen SA. Insights into the function of the human P-TEFb component CDK9 in the regulation of chromatin modifications and co-transcriptional mRNA processing. Cell Cycle. 2009;8:3636–3642. doi: 10.4161/cc.8.22.9890. PubMed DOI

Kari V, et al. A subset of histone H2B genes produces polyadenylated mRNAs under a variety of cellular conditions. PLoS ONE. 2013;8:e63745. doi: 10.1371/journal.pone.0063745. PubMed DOI PMC

Lyons SM, et al. A subset of replication-dependent histone mRNAs are expressed as polyadenylated RNAs in terminally differentiated tissues. Nucleic Acids Res. 2016;44:9190–9205. doi: 10.1093/nar/gkw418. PubMed DOI PMC

Mendoza-Figueroa MS, Tatomer DC, Wilusz JE. The integrator complex in transcription and development. Trends Biochem. Sci. 2020;45:923–934. doi: 10.1016/j.tibs.2020.07.004. PubMed DOI PMC

Huang KL, et al. Integrator recruits protein phosphatase 2A to prevent pause release and facilitate transcription termination. Mol. Cell. 2020;80:345–358.e349. doi: 10.1016/j.molcel.2020.08.016. PubMed DOI PMC

Mascibroda, L. G. et al. INTS13 mutations causing a developmental ciliopathy disrupt integrator complex assembly. Preprint at bioRxiv10.1101/2020.07.20.209130 (2020).

Ouchi M, Ouchi T. Regulation of ATM/DNA-PKcs phosphorylation by BRCA1-associated BAAT1. Genes Cancer. 2010;1:1211–1214. doi: 10.1177/1947601911404222. PubMed DOI PMC

Gurumurthy, A. et al. Super-enhancer mediated regulation of adult beta-globin gene expression: the role of eRNA and Integrator. Nucleic Acids Res.10.1093/nar/gkab002 (2021). PubMed PMC

Neugebauer KM. Special focus on the Cajal Body. RNA Biol. 2017;14:669–670. doi: 10.1080/15476286.2017.1316928. PubMed DOI PMC

Jia Y, Mu JC, Ackerman SL. Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration. Cell. 2012;148:296–308. doi: 10.1016/j.cell.2011.11.057. PubMed DOI PMC

Elsaid MF, et al. Mutation in noncoding RNA RNU12 causes early onset cerebellar ataxia. Ann. Neurol. 2017;81:68–78. doi: 10.1002/ana.24826. PubMed DOI

Edery P, et al. Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA. Science. 2011;332:240–243. doi: 10.1126/science.1202205. PubMed DOI

Hata T, Nakayama M. Targeted disruption of the murine large nuclear KIAA1440/Ints1 protein causes growth arrest in early blastocyst stage embryos and eventual apoptotic cell death. Biochim. Biophys. Acta. 2007;1773:1039–1051. doi: 10.1016/j.bbamcr.2007.04.010. PubMed DOI

Rutkowski RJ, Warren WD. Phenotypic analysis of deflated/Ints7 function in Drosophila development. Dev. Dyn. 2009;238:1131–1139. doi: 10.1002/dvdy.21922. PubMed DOI

Tao S, Cai Y, Sampath K. The Integrator subunits function in hematopoiesis by modulating Smad/BMP signaling. Development. 2009;136:2757–2765. doi: 10.1242/dev.034959. PubMed DOI

Kapp LD, Abrams EW, Marlow FL, Mullins MC. The integrator complex subunit 6 (Ints6) confines the dorsal organizer in vertebrate embryogenesis. PLoS Genet. 2013;9:e1003822. doi: 10.1371/journal.pgen.1003822. PubMed DOI PMC

Gomez-Orte E, et al. Disruption of the Caenorhabditis elegans Integrator complex triggers a non-conventional transcriptional mechanism beyond snRNA genes. PLoS Genet. 2019;15:e1007981. doi: 10.1371/journal.pgen.1007981. PubMed DOI PMC

Zhang P, et al. INTS11 regulates hematopoiesis by promoting PRC2 function. Sci. Adv. 2021;7:eabh1684. doi: 10.1126/sciadv.abh1684. PubMed DOI PMC

Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI

Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI

Hebert AS, et al. The one hour yeast proteome. Mol. Cell Proteom. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC

Cox J, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Tyanova S, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI

Cunningham F, et al. Ensembl 2019. Nucleic Acids Res. 2019;47:D745–D751. doi: 10.1093/nar/gky1113. PubMed DOI PMC

Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...