ESGO/ISUOG/IOTA/ESGE Consensus Statement on pre-operative diagnosis of ovarian tumors
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
34112736
PubMed Central
PMC8273689
DOI
10.1136/ijgc-2021-002565
PII: ijgc-2021-002565
Knihovny.cz E-zdroje
- Klíčová slova
- ovarian neoplasms, ovary,
- MeSH
- konsensus MeSH
- lidé MeSH
- nádory vaječníků diagnóza MeSH
- předoperační období MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- Evropa MeSH
The European Society of Gynaecological Oncology (ESGO), the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG), the International Ovarian Tumour Analysis (IOTA) group, and the European Society for Gynaecological Endoscopy (ESGE) jointly developed clinically relevant and evidence-based statements on the pre-operative diagnosis of ovarian tumors, including imaging techniques, biomarkers, and prediction models. ESGO/ISUOG/IOTA/ESGE nominated a multidisciplinary international group, including expert practising clinicians and researchers who have demonstrated leadership and expertise in the pre-operative diagnosis of ovarian tumors and management of patients with ovarian cancer (19 experts across Europe). A patient representative was also included in the group. To ensure that the statements were evidence-based, the current literature was reviewed and critically appraised. Preliminary statements were drafted based on the review of the relevant literature. During a conference call, the whole group discussed each preliminary statement and a first round of voting was carried out. Statements were removed when a consensus among group members was not obtained. The voters had the opportunity to provide comments/suggestions with their votes. The statements were then revised accordingly. Another round of voting was carried out according to the same rules to allow the whole group to evaluate the revised version of the statements. The group achieved consensus on 18 statements. This Consensus Statement presents these ESGO/ISUOG/IOTA/ESGE statements on the pre-operative diagnosis of ovarian tumors and the assessment of carcinomatosis, together with a summary of the evidence supporting each statement.
Clinical Research Unit Institut Bergonie Bordeaux France
Development and Regeneration KU Leuven Leuven Belgium
Division of Translational MRI Department of Imaging and Pathology KU Leuven Leuven Belgium
European Network of Gynaecological Cancers Advocacy Groups Executive Group Prague Czech Republic
Gynaecologic Oncology Hammersmith Hospital Imperial College London UK
Gynaecological Surgery Institut Gustave Roussy Villejuif France
Gynaecology and Gynaecological Oncology Evangelische Kliniken Essen Mitte Essen Germany
Gynaecology and Obstetrics University Clinic of Navarra Madrid Spain
Gynecologic Oncology Fondazione Policlinico Universitario A Gemelli IRCCS Rome Italy
Gynecology and Obstetrics Gynecologic Oncology Unit Santa Chiara Hospital Trento Italy
Gynecology and Obstetrics University Hospitals KU Leuven Leuven Belgium
KIU Patient Organisation for Women with Gynaecological Cancer Copenhagen Denmark
Obstetrics and Gynecologic Oncology University Hospital Strasbourg France
Obstetrics and Gynecology Medical University of Innsbruck Innsbruck Austria
Obstetrics and Gynecology Università Cattolica del Sacro Cuore Rome Italy
Radiology University Clinic of Navarra Madrid Spain
Radiology University Hospitals Leuven Leuven Belgium
Woman Child and Public Health Fondazione Policlinico Universitario A Gemelli IRCCS Rome Italy
Zobrazit více v PubMed
Querleu D, Planchamp F, Chiva L, et al. . European Society of Gynaecological Oncology (ESGO) guidelines for ovarian cancer surgery. Int J Gynecol Cancer 2017;27:1534–42. 10.1097/IGC.0000000000001041 PubMed DOI
Woo YL, Kyrgiou M, Bryant A, et al. . Centralisation of services for gynaecological cancer. Cochrane Database Syst Rev 2012;4. 10.1002/14651858.CD007945.pub2 PubMed DOI PMC
Engelen MJA, Kos HE, Willemse PHB, et al. . Surgery by consultant gynecologic oncologists improves survival in patients with ovarian carcinoma. Cancer 2006;106:589–98. 10.1002/cncr.21616 PubMed DOI
Froyman W, Landolfo C, De Cock B, et al. . Risk of complications in patients with conservatively managed ovarian tumours (IOTA5): a 2-year interim analysis of a multicentre, prospective, cohort study. Lancet Oncol 2019;20:448–58. 10.1016/S1470-2045(18)30837-4 PubMed DOI
du Bois A, Rochon J, Pfisterer J, et al. . Variations in institutional infrastructure, physician specialization and experience, and outcome in ovarian cancer: a systematic review. Gynecol Oncol 2009;112:422–36. 10.1016/j.ygyno.2008.09.036 PubMed DOI
Elit LM, Bondy SJ, Paszat LP, et al. . Surgical outcomes in women with ovarian cancer. Can J Surg 2008;51:346–54. PubMed PMC
Vernooij F, Heintz P, Witteveen E, et al. . The outcomes of ovarian cancer treatment are better when provided by gynecologic oncologists and in specialized hospitals: a systematic review. Gynecol Oncol 2007;105:801–12. 10.1016/j.ygyno.2007.02.030 PubMed DOI
Kaijser J, Vandecaveye V, Deroose CM, et al. . Imaging techniques for the pre-surgical diagnosis of adnexal tumours. Best Pract Res Clin Obstet Gynaecol 2014;28:683–95. 10.1016/j.bpobgyn.2014.03.013 PubMed DOI
Valentin L, Hagen B, Tingulstad S, et al. . Comparison of 'pattern recognition' and logistic regression models for discrimination between benign and malignant pelvic masses: a prospective cross validation. Ultrasound Obstet Gynecol 2001;18:357–65. 10.1046/j.0960-7692.2001.00500.x PubMed DOI
Timmerman D. The use of mathematical models to evaluate pelvic masses; can they beat an expert operator? Best Pract Res Clin Obstet Gynaecol 2004;18:91–104. 10.1016/j.bpobgyn.2003.09.009 PubMed DOI
Meys EMJ, Kaijser J, Kruitwagen RFPM, et al. . Subjective assessment versus ultrasound models to diagnose ovarian cancer: a systematic review and meta-analysis. Eur J Cancer 2016;58:17–29. 10.1016/j.ejca.2016.01.007 PubMed DOI
Valentin L. Prospective cross-validation of Doppler ultrasound examination and gray-scale ultrasound imaging for discrimination of benign and malignant pelvic masses. Ultrasound Obstet Gynecol 1999;14:273–83. 10.1046/j.1469-0705.1999.14040273.x PubMed DOI
Timmerman D, Schwärzler P, Collins WP, et al. . Subjective assessment of adnexal masses with the use of ultrasonography: an analysis of interobserver variability and experience. Ultrasound Obstet Gynecol 1999;13:11–16. 10.1046/j.1469-0705.1999.13010011.x PubMed DOI
Yazbek J, Raju SK, Ben-Nagi J, et al. . Effect of quality of gynaecological ultrasonography on management of patients with suspected ovarian cancer: a randomised controlled trial. Lancet Oncol 2008;9:124–31. 10.1016/S1470-2045(08)70005-6 PubMed DOI
Education and Practical Standards Committee, European Federation of Societies for Ultrasound in Medicine and Biology . Minimum training recommendations for the practice of medical ultrasound. Ultraschall Med 2006;27:79–105. 10.1055/s-2006-933605 PubMed DOI
Jacobs I, Oram D, Fairbanks J, et al. . A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol 1990;97:922–9. 10.1111/j.1471-0528.1990.tb02448.x PubMed DOI
Chacón E, Dasí J, Caballero C, et al. . Risk of ovarian malignancy algorithm versus risk malignancy index-I for preoperative assessment of adnexal masses: a systematic review and meta-analysis. Gynecol Obstet Invest 2019;84:591–8. 10.1159/000501681 PubMed DOI
Westwood M, Ramaekers B, Lang S, et al. . Risk scores to guide referral decisions for people with suspected ovarian cancer in secondary care: a systematic review and cost-effectiveness analysis. Health Technol Assess 2018;22:1–264. 10.3310/hta22440 PubMed DOI PMC
Khoiwal K, Bahadur A, Kumari R, et al. . Assessment of diagnostic value of serum CA-125 and risk of malignancy index scoring in the evaluation of adnexal masses. J Midlife Health 2019;10:192–6. 10.4103/jmh.JMH_84_19 PubMed DOI PMC
Dochez V, Randet M, Renaudeau C. Efficacy of HE4, CA125, risk of malignancy index and risk of ovarian malignancy index to detect ovarian cancer in women with presumed benign ovarian tumours: a prospective, multicentre trial. J Clin Med 2019;8. 10.3390/jcm8111784 PubMed DOI PMC
Al-Musalhi K, Al-Kindi M, Ramadhan F, et al. . Validity of cancer antigen-125 (CA-125) and risk of malignancy index (RMI) in the diagnosis of ovarian cancer. Oman Med J 2015;30:428–34. 10.5001/omj.2015.85 PubMed DOI PMC
Zhang S, Yu S, Hou W, et al. . Diagnostic extended usefulness of RMI: comparison of four risk of malignancy index in preoperative differentiation of borderline ovarian tumors and benign ovarian tumors. J Ovarian Res 2019;12:87. 10.1186/s13048-019-0568-3 PubMed DOI PMC
Bouzari Z, Yazdani S, Shirkhani Kelagar Z, et al. . Risk of malignancy index as an evaluation of preoperative pelvic mass. Caspian J Intern Med 2011;2:331–5. PubMed PMC
Chopra S, Vaishya R, Kaur J. An evaluation of the applicability of the risk of malignancy index for adnexal masses to patients seen at a tertiary hospital in Chandigarh, India. J Obstet Gynaecol India 2015;65:405–10. 10.1007/s13224-014-0583-7 PubMed DOI PMC
Al Musalhi K, Al Kindi M, Al Aisary F, et al. . Evaluation of HE4, CA-125, risk of ovarian malignancy algorithm (ROMA) and risk of malignancy index (RMI) in the preoperative assessment of patients with adnexal mass. Oman Med J 2016;31:336–44. 10.5001/omj.2016.68 PubMed DOI PMC
Javdekar R, Maitra N. Risk of malignancy index (RMI) in evaluation of adnexal mass. J Obstet Gynaecol India 2015;65:117–21. 10.1007/s13224-014-0609-1 PubMed DOI PMC
Aktürk E, Karaca RE, Alanbay I, et al. . Comparison of four malignancy risk indices in the detection of malignant ovarian masses. J Gynecol Oncol 2011;22:177–82. 10.3802/jgo.2011.22.3.177 PubMed DOI PMC
Hada A, Han L-P, Chen Y, et al. . Comparison of the predictive performance of risk of malignancy indexes 1-4, HE4 and risk of malignancy algorithm in the triage of adnexal masses. J Ovarian Res 2020;13:46. 10.1186/s13048-020-00643-6 PubMed DOI PMC
Anton C, Carvalho FM, Oliveira EI, et al. . A comparison of CA125, HE4, risk ovarian malignancy algorithm (ROMA), and risk malignancy index (RMI) for the classification of ovarian masses. Clinics 2012;67:437–41. 10.6061/clinics/2012(05)06 PubMed DOI PMC
Moore RG, Brown AK, Miller MC, et al. . The use of multiple novel tumor biomarkers for the detection of ovarian carcinoma in patients with a pelvic mass. Gynecol Oncol 2008;108:402–8. 10.1016/j.ygyno.2007.10.017 PubMed DOI
Kaijser J, Van Gorp T, Sayasneh A, et al. . Differentiating stage I epithelial ovarian cancer from benign disease in women with adnexal tumors using biomarkers or the ROMA algorithm. Gynecol Oncol 2013;130:398–9. 10.1016/j.ygyno.2013.04.472 PubMed DOI
Timmerman D, Van Calster B, Jurkovic D, et al. . Inclusion of CA-125 does not improve mathematical models developed to distinguish between benign and malignant adnexal tumors. J Clin Oncol 2007;25:4194–200. 10.1200/JCO.2006.09.5943 PubMed DOI
Timmerman D, Valentin L, Bourne TH, et al. . Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) group. Ultrasound Obstet Gynecol 2000;16:500–5. 10.1046/j.1469-0705.2000.00287.x PubMed DOI
Timmerman D, Testa AC, Bourne T, et al. . Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis group. J Clin Oncol 2005;23:8794–801. 10.1200/JCO.2005.01.7632 PubMed DOI
Timmerman D, Van Calster B, Testa A, et al. . Predicting the risk of malignancy in adnexal masses based on the simple rules from the International Ovarian Tumor Analysis group. Am J Obstet Gynecol 2016;214:424–37. 10.1016/j.ajog.2016.01.007 PubMed DOI
Van Calster B, Van Hoorde K, Valentin L, et al. . Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study. BMJ 2014;349:g5920. 10.1136/bmj.g5920 PubMed DOI PMC
Van Holsbeke C, Van Calster B, Bourne T, et al. . External validation of diagnostic models to estimate the risk of malignancy in adnexal masses. Clin Cancer Res 2012;18:815–25. 10.1158/1078-0432.CCR-11-0879 PubMed DOI
Sayasneh A, Wynants L, Preisler J, et al. . Multicentre external validation of IOTA prediction models and RMI by operators with varied training. Br J Cancer 2013;108:2448–54. 10.1038/bjc.2013.224 PubMed DOI PMC
Timmerman D, Testa AC, Bourne T, et al. . Simple ultrasound-based rules for the diagnosis of ovarian cancer. Ultrasound Obstet Gynecol 2008;31:681–90. 10.1002/uog.5365 PubMed DOI
Timmerman D, Ameye L, Fischerova D, et al. . Simple ultrasound rules to distinguish between benign and malignant adnexal masses before surgery: prospective validation by IOTA group. BMJ 2010;341:c6839. 10.1136/bmj.c6839 PubMed DOI PMC
Hartman CA, Juliato CRT, Sarian LO, et al. . Ultrasound criteria and CA 125 as predictive variables of ovarian cancer in women with adnexal tumors. Ultrasound Obstet Gynecol 2012;40:360–6. 10.1002/uog.11201 PubMed DOI
Alcazar JL, Pascual MA, Olartecoechea B, et al. . IOTA simple rules for discriminating between benign and malignant adnexal masses: prospective external validation. Ultrasound Obstet Gynecol 2013;42:467–71. PubMed
Tantipalakorn C, Wanapirak C, Khunamornpong S, et al. . IOTA simple rules in differentiating between benign and malignant ovarian tumors. Asian Pac J Cancer Prev 2014;15:5123–6. 10.7314/APJCP.2014.15.13.5123 PubMed DOI
Nunes N, Ambler G, Foo X, et al. . Use of IOTA simple rules for diagnosis of ovarian cancer: meta-analysis. Ultrasound Obstet Gynecol 2014;44:503–14. 10.1002/uog.13437 PubMed DOI
Ruiz de Gauna B, Rodriguez D, Olartecoechea B, et al. . Diagnostic performance of IOTA simple rules for adnexal masses classification: a comparison between two centers with different ovarian cancer prevalence. Eur J Obstet Gynecol Reprod Biol 2015;191:10–14. 10.1016/j.ejogrb.2015.05.024 PubMed DOI
Knafel A, Banas T, Nocun A, et al. . The prospective external validation of international ovarian tumor analysis (IOTA) simple rules in the hands of level I and II examiners. Ultraschall Med 2016;37:516–23. 10.1055/s-0034-1398773 PubMed DOI
Ameye L, Timmerman D, Valentin L, et al. . Clinically oriented three-step strategy for assessment of adnexal pathology. Ultrasound Obstet Gynecol 2012;40:582–91. 10.1002/uog.11177 PubMed DOI
Kaijser J, Sayasneh A, Van Hoorde K, et al. . Presurgical diagnosis of adnexal tumours using mathematical models and scoring systems: a systematic review and meta-analysis. Hum Reprod Update 2014;20:449–62. 10.1093/humupd/dmt059 PubMed DOI
American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Gynecology . Practice Bulletin No. 174: evaluation and management of adnexal masses. Obstet Gynecol 2016;128:e210–26. 10.1097/AOG.0000000000001768 PubMed DOI
Royal College of Obstetricians and Gynaecologists . Management of suspected ovarian masses in premenopausal women, 2011. Green-top guideline no 62. Available: https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_62.pdf
Glanc P, Benacerraf B, Bourne T, et al. . First international consensus report on adnexal masses: management recommendations. J Ultrasound Med 2017;36:849–63. 10.1002/jum.14197 PubMed DOI
Nunes N, Ambler G, Foo X, et al. . Comparison of two protocols for the management of asymptomatic postmenopausal women with adnexal tumours - a randomised controlled trial of RMI/RCOG vs Simple Rules. Br J Cancer 2017;116:584–91. 10.1038/bjc.2017.17 PubMed DOI PMC
Piovano E, Cavallero C, Fuso L, et al. . Diagnostic accuracy and cost-effectiveness of different strategies to triage women with adnexal masses: a prospective study. Ultrasound Obstet Gynecol 2017;50:395–403. 10.1002/uog.17320 PubMed DOI
Alcázar JL, Pascual MA, Graupera B, et al. . External validation of IOTA simple descriptors and simple rules for classifying adnexal masses. Ultrasound Obstet Gynecol 2016;48:397–402. 10.1002/uog.15854 PubMed DOI
Sayasneh A, Ferrara L, De Cock B, et al. . Evaluating the risk of ovarian cancer before surgery using the ADNEX model: a multicentre external validation study. Br J Cancer 2016;115:542–8. 10.1038/bjc.2016.227 PubMed DOI PMC
Araujo KG, Jales RM, Pereira PN, et al. . Performance of the IOTA ADNEX model in preoperative discrimination of adnexal masses in a gynecological oncology center. Ultrasound Obstet Gynecol 2017;49:778–83. 10.1002/uog.15963 PubMed DOI
Meys EMJ, Jeelof LS, Achten NMJ, et al. . Estimating risk of malignancy in adnexal masses: external validation of the ADNEX model and comparison with other frequently used ultrasound methods. Ultrasound Obstet Gynecol 2017;49:784–92. 10.1002/uog.17225 PubMed DOI PMC
Szubert S, Wojtowicz A, Moszynski R, et al. . External validation of the IOTA ADNEX model performed by two independent gynecologic centers. Gynecol Oncol 2016;142:490–5. 10.1016/j.ygyno.2016.06.020 PubMed DOI
Van Calster B, Steyerberg EW, Bourne T, et al. . Flawed external validation study of the ADNEX model to diagnose ovarian cancer. Gynecol Oncol Rep 2016;18:49–50. 10.1016/j.gore.2016.09.003 PubMed DOI PMC
Van Calster B. External validation of ADNEX model for diagnosing ovarian cancer: evaluating performance of differentiation between tumor subgroups. Ultrasound Obstet Gynecol 2017;50:406–7. 10.1002/uog.17391 PubMed DOI
Wynants L, Timmerman D, Verbakel JY, et al. . Clinical utility of risk models to refer patients with adnexal masses to specialized oncology care: multicenter external validation using decision curve analysis. Clin Cancer Res 2017;23:5082–90. 10.1158/1078-0432.CCR-16-3248 PubMed DOI
Viora E, Piovano E, Baima Poma C, et al. . The ADNEX model to triage adnexal masses: an external validation study and comparison with the IOTA two-step strategy and subjective assessment by an experienced ultrasound operator. Eur J Obstet Gynecol Reprod Biol 2020;247:207–11. 10.1016/j.ejogrb.2020.02.022 PubMed DOI
Van Calster B, Valentin L, Froyman W, et al. . Validation of models to diagnose ovarian cancer in patients managed surgically or conservatively: multicentre cohort study. BMJ 2020;370:m2614. 10.1136/bmj.m2614 PubMed DOI PMC
Amor F, Vaccaro H, Alcázar JL, et al. . Gynecologic imaging reporting and data system: a new proposal for classifying adnexal masses on the basis of sonographic findings. J Ultrasound Med 2009;28:285–91. 10.7863/jum.2009.28.3.285 PubMed DOI
Amor F, Alcázar JL, Vaccaro H, et al. . GI-RADS reporting system for ultrasound evaluation of adnexal masses in clinical practice: a prospective multicenter study. Ultrasound Obstet Gynecol 2011;38:450–5. 10.1002/uog.9012 PubMed DOI
Koneczny J, Czekierdowski A, Florczak M, et al. . The use of sonographic subjective tumor assessment, IOTA logistic regression model 1, IOTA Simple Rules and GI-RADS system in the preoperative prediction of malignancy in women with adnexal masses. Ginekol Pol 2017;88:647–53. 10.5603/GP.a2017.0116 PubMed DOI
Zheng H, Tie Y, Wang X, et al. . Assessment of the diagnostic value of using serum CA125 and GI-RADS system in the evaluation of adnexal masses. Medicine 2019;98:e14577. 10.1097/MD.0000000000014577 PubMed DOI PMC
Zhang T, Li F, Liu J, et al. . Diagnostic performance of the Gynecology Imaging Reporting and Data System for malignant adnexal masses. Int J Gynaecol Obstet 2017;137:325–31. 10.1002/ijgo.12153 PubMed DOI
Behnamfar F, Adibi A, Khadra H, et al. . Diagnostic accuracy of gynecology imaging reporting and data system in evaluation of adnexal lesions. J Res Med Sci 2019;24. 10.4103/jrms.JRMS_608_18 PubMed DOI PMC
Migda M, Bartosz M, Migda MS, et al. . Diagnostic value of the gynecology imaging reporting and data system (GI-RADS) with the ovarian malignancy marker CA-125 in preoperative adnexal tumor assessment. J Ovarian Res 2018;11:92. 10.1186/s13048-018-0465-1 PubMed DOI PMC
Basha MAA, Refaat R, Ibrahim SA. GI-RADS: diagnostic performance and inter-reviewer agreement. Eur Radiol 2019;29:5981–90. PubMed
Andreotti RF, Timmerman D, Benacerraf BR, et al. . Ovarian-adnexal reporting lexicon for ultrasound: a white paper of the ACR Ovarian-Adnexal Reporting and Data System Committee. J Am Coll Radiol 2018;15:1415–29. 10.1016/j.jacr.2018.07.004 PubMed DOI
Erratum. J Am Coll Radiol 2019;16:403–6. PubMed
Andreotti RF, Timmerman D, Strachowski LM, et al. . O-RADS US risk stratification and management system: a consensus guideline from the ACR Ovarian-Adnexal Reporting and Data System Committee. Radiology 2020;294:168–85. 10.1148/radiol.2019191150 PubMed DOI
Basha MAA, Metwally MI, Gamil SA, et al. . Comparison of O-RADS, GI-RADS, and IOTA Simple Rules regarding malignancy rate, validity, and reliability for diagnosis of adnexal masses. Eur Radiol 2021;31:674–84. 10.1007/s00330-020-07143-7 PubMed DOI
Medeiros LR, Rosa DD, da Rosa MI, et al. . Accuracy of CA 125 in the diagnosis of ovarian tumors: a quantitative systematic review. Eur J Obstet Gynecol Reprod Biol 2009;142:99–105. 10.1016/j.ejogrb.2008.08.011 PubMed DOI
Babic A, Cramer DW, Kelemen LE, et al. . Predictors of pretreatment CA125 at ovarian cancer diagnosis: a pooled analysis in the Ovarian Cancer Association Consortium. Cancer Causes Control 2017;28:459–68. 10.1007/s10552-016-0841-3 PubMed DOI PMC
Johnson CC, Kessel B, Riley TL, et al. . The epidemiology of CA-125 in women without evidence of ovarian cancer in the prostate, lung, colorectal and ovarian cancer (PLCO) screening trial. Gynecol Oncol 2008;110:383–9. 10.1016/j.ygyno.2008.05.006 PubMed DOI PMC
Pauler DK, Menon U, McIntosh M, et al. . Factors influencing serum CA125II levels in healthy postmenopausal women. Cancer Epidemiol Biomarkers Prev 2001;10:489–93. PubMed
Cramer DW, Vitonis AF, Welch WR, et al. . Correlates of the preoperative level of CA125 at presentation of ovarian cancer. Gynecol Oncol 2010;119:462–8. 10.1016/j.ygyno.2010.08.028 PubMed DOI PMC
Lycke M, Kristjansdottir B, Sundfeldt K. A multicenter clinical trial validating the performance of HE4, CA125, risk of ovarian malignancy algorithm and risk of malignancy index. Gynecol Oncol 2018;151:159–65. 10.1016/j.ygyno.2018.08.025 PubMed DOI
Lin J, Qin J, Sangvatanakul V. Human epididymis protein 4 for differential diagnosis between benign gynecologic disease and ovarian cancer: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2013;167:81–5. 10.1016/j.ejogrb.2012.10.036 PubMed DOI
Richards A, Herbst U, Manalang J, et al. . HE4, CA125, the Risk of Malignancy Algorithm and the Risk of Malignancy Index and complex pelvic masses - a prospective comparison in the pre-operative evaluation of pelvic masses in an Australian population. Aust N Z J Obstet Gynaecol 2015;55:493–7. 10.1111/ajo.12363 PubMed DOI
Romagnolo C, Leon AE, Fabricio ASC, et al. . HE4, CA125 and risk of ovarian malignancy algorithm (ROMA) as diagnostic tools for ovarian cancer in patients with a pelvic mass: an Italian multicenter study. Gynecol Oncol 2016;141:303–11. 10.1016/j.ygyno.2016.01.016 PubMed DOI
Li F, Tie R, Chang K, et al. . Does risk for ovarian malignancy algorithm excel human epididymis protein 4 and CA125 in predicting epithelial ovarian cancer: a meta-analysis. BMC Cancer 2012;12:258. 10.1186/1471-2407-12-258 PubMed DOI PMC
Wang J, Gao J, Yao H, et al. . Diagnostic accuracy of serum HE4, CA125 and ROMA in patients with ovarian cancer: a meta-analysis. Tumour Biol 2014;35:6127–38. 10.1007/s13277-014-1811-6 PubMed DOI
Van Gorp T, Veldman J, Van Calster B, et al. . Subjective assessment by ultrasound is superior to the risk of malignancy index (RMI) or the risk of ovarian malignancy algorithm (ROMA) in discriminating benign from malignant adnexal masses. Eur J Cancer 2012;48:1649–56. 10.1016/j.ejca.2011.12.003 PubMed DOI
Stiekema A, Lok CAR, Kenter GG, et al. . A predictive model combining human epididymal protein 4 and radiologic features for the diagnosis of ovarian cancer. Gynecol Oncol 2014;132:573–7. 10.1016/j.ygyno.2014.01.005 PubMed DOI
Yanaranop M, Anakrat V, Siricharoenthai S, et al. . Is the risk of ovarian malignancy algorithm better than other tests for predicting ovarian malignancy in women with pelvic masses? Gynecol Obstet Invest 2017;82:47–53. 10.1159/000446238 PubMed DOI
Jacob F, Meier M, Caduff R, et al. . No benefit from combining HE4 and CA125 as ovarian tumor markers in a clinical setting. Gynecol Oncol 2011;121:487–91. 10.1016/j.ygyno.2011.02.022 PubMed DOI
Melo Ângela, Veríssimo R, Farinha M, et al. . Discriminative value of CA-125, HE4, risk of malignancy index II (RMI-II) and risk of malignancy algorithm (ROMA) in the differential diagnosis of pelvic masses: conclusions from a referral centre in Portugal. J Obstet Gynaecol 2018;38:1140–5. 10.1080/01443615.2018.1457632 PubMed DOI
Jia M-M, Deng J, Cheng X-L, et al. . Diagnostic accuracy of urine HE4 in patients with ovarian cancer: a meta-analysis. Oncotarget 2017;8:9660–71. 10.18632/oncotarget.14173 PubMed DOI PMC
Huang J, Chen J, Huang Q. Diagnostic value of HE4 in ovarian cancer: a meta-analysis. Eur J Obstet Gynecol Reprod Biol 2018;231:35–42. 10.1016/j.ejogrb.2018.10.008 PubMed DOI
Cao H, You D, Lan Z, et al. . Prognostic value of serum and tissue HE4 expression in ovarian cancer: a systematic review with meta-analysis of 90 studies. Expert Rev Mol Diagn 2018;18:371–83. 10.1080/14737159.2018.1457436 PubMed DOI
Yu S, Yang HJ, Xie SQ, et al. . Diagnostic value of HE4 for ovarian cancer: a meta-analysis. Clin Chem Lab Med 2012;50:1439–46. 10.1515/cclm-2011-0477 PubMed DOI
Sandri MT, Bottari F, Franchi D, et al. . Comparison of HE4, CA125 and ROMA algorithm in women with a pelvic mass: correlation with pathological outcome. Gynecol Oncol 2013;128:233–8. 10.1016/j.ygyno.2012.11.026 PubMed DOI
Kim B, Park Y, Kim B. Diagnostic performance of CA 125, HE4, and risk of ovarian malignancy algorithm for ovarian cancer. J Clin Lab Anal 2019;33:e22624. 10.1002/jcla.22624 PubMed DOI PMC
Kotowicz B, Fuksiewicz M, Sobiczewski P, et al. . Clinical value of human epididymis protein 4 and the risk of ovarian malignancy algorithm in differentiating borderline pelvic tumors from epithelial ovarian cancer in early stages. Eur J Obstet Gynecol Reprod Biol 2015;194:141–6. 10.1016/j.ejogrb.2015.09.008 PubMed DOI
Shin KH, Kim HH, Kwon BS, et al. . Clinical usefulness of cancer antigen (CA) 125, human epididymis 4, and CA72-4 levels and risk of ovarian malignancy algorithm values for diagnosing ovarian tumors in Korean patients with and without endometriosis. Ann Lab Med 2020;40:40–7. 10.3343/alm.2020.40.1.40 PubMed DOI PMC
Terlikowska KM, Dobrzycka B, Witkowska AM, et al. . Preoperative HE4, CA125 and ROMA in the differential diagnosis of benign and malignant adnexal masses. J Ovarian Res 2016;9:43. 10.1186/s13048-016-0254-7 PubMed DOI PMC
Xu Y, Zhong R, He J, et al. . Modification of cut-off values for HE4, CA125 and the ROMA algorithm for early-stage epithelial ovarian cancer detection: results from 1021 cases in South China. Clin Biochem 2016;49:32–40. 10.1016/j.clinbiochem.2015.07.029 PubMed DOI
Yanaranop M, Jantarateptewan N, Tiyayon J, et al. . Significance of serum human epididymis protein 4 and cancer antigen 125 in distinguishing type I and type II epithelial ovarian cancers. Int J Gynecol Cancer 2018;28:1058–65. 10.1097/IGC.0000000000001277 PubMed DOI
Zhang P, Wang C, Cheng L, et al. . Comparison of HE4, CA125, and ROMA diagnostic accuracy: a prospective and multicenter study for Chinese women with epithelial ovarian cancer. Medicine 2015;94:e2402. 10.1097/MD.0000000000002402 PubMed DOI PMC
Choi H-J, Lee Y-Y, Sohn I, et al. . Comparison of CA 125 alone and risk of ovarian malignancy algorithm (ROMA) in patients with adnexal mass: a multicenter study. Curr Probl Cancer 2020;44:100508. 10.1016/j.currproblcancer.2019.100508 PubMed DOI
Kaijser J, Van Gorp T, Smet M-E, et al. . Are serum HE4 or ROMA scores useful to experienced examiners for improving characterization of adnexal masses after transvaginal ultrasonography? Ultrasound Obstet Gynecol 2014;43:89–97. 10.1002/uog.12551 PubMed DOI
Chen X, Zhou H, Chen R, et al. . Development of a multimarker assay for differential diagnosis of benign and malignant pelvic masses. Clin Chim Acta 2015;440:57–63. 10.1016/j.cca.2014.11.013 PubMed DOI
Cui R, Wang Y, Li Y, et al. . Clinical value of ROMA index in diagnosis of ovarian cancer: meta-analysis. Cancer Manag Res 2019;11:2545–51. 10.2147/CMAR.S199400 PubMed DOI PMC
Huy NVQ, Van Khoa V, Tam LM, et al. . Standard and optimal cut-off values of serum CA-125, HE4 and ROMA in preoperative prediction of ovarian cancer in Vietnam. Gynecol Oncol Rep 2018;25:110–4. 10.1016/j.gore.2018.07.002 PubMed DOI PMC
Shen F, Lu S, Peng Y, et al. . Performance of ROMA based on architect CA 125 II and HE4 values in Chinese women presenting with a pelvic mass: a multicenter prospective study. Clin Chim Acta 2017;471:119–25. 10.1016/j.cca.2017.05.029 PubMed DOI
Sagi-Dain L, Lavie O, Auslander R, et al. . CEA in evaluation of adnexal mass: retrospective cohort analysis and review of the literature. Int J Biol Markers 2015;30:e394–400. 10.5301/jbm.5000158 PubMed DOI
Sagi-Dain L, Lavie O, Auslander R, et al. . CA 19-9 in evaluation of adnexal mass: retrospective cohort analysis and review of the literature. Int J Biol Markers 2015;30:e333–40. 10.5301/jbm.5000139 PubMed DOI
Kelly PJ, Archbold P, Price JH, et al. . Serum CA19.9 levels are commonly elevated in primary ovarian mucinous tumours but cannot be used to predict the histological subtype. J Clin Pathol 2010;63:169–73. 10.1136/jcp.2009.072355 PubMed DOI
Bozkurt M, Yumru AE, Aral I. Evaluation of the importance of the serum levels of CA-125, CA15-3, CA-19-9, carcinoembryonic antigen and alpha fetoprotein for distinguishing benign and malignant adnexal masses and contribution of different test combinations to diagnostic accuracy. Eur J Gynaecol Oncol 2013;34:540–4. PubMed
Dohan A, Hoeffel C, Soyer P, et al. . Evaluation of the peritoneal carcinomatosis index with CT and MRI. Br J Surg 2017;104:1244–9. 10.1002/bjs.10527 PubMed DOI
Low RN, Barone RM, Lucero J. Comparison of MRI and CT for predicting the peritoneal cancer index (PCI) preoperatively in patients being considered for cytoreductive surgical procedures. Ann Surg Oncol 2015;22:1708–15. 10.1245/s10434-014-4041-7 PubMed DOI
Torkzad MR, Casta N, Bergman A, et al. . Comparison between MRI and CT in prediction of peritoneal carcinomatosis index (PCI) in patients undergoing cytoreductive surgery in relation to the experience of the radiologist. J Surg Oncol 2015;111:746–51. 10.1002/jso.23878 PubMed DOI
Gadelhak B, Tawfik AM, Saleh GA, et al. . Extended abdominopelvic MRI versus CT at the time of adnexal mass characterization for assessing radiologic peritoneal cancer index (PCI) prior to cytoreductive surgery. Abdom Radiol 2019;44:2254–61. 10.1007/s00261-019-01939-y PubMed DOI
Shimada K, Matsumoto K, Mimura T, et al. . Ultrasound-based logistic regression model LR2 versus magnetic resonance imaging for discriminating between benign and malignant adnexal masses: a prospective study. Int J Clin Oncol 2018;23:514–21. 10.1007/s10147-017-1222-y PubMed DOI
Dai G, Liang K, Xiao Z, et al. . A meta-analysis on the diagnostic value of diffusion-weighted imaging on ovarian cancer. J Buon 2019;24:2333–40. PubMed
Meng X-F, Zhu S-C, Sun S-J, et al. . Diffusion weighted imaging for the differential diagnosis of benign vs. malignant ovarian neoplasms. Oncol Lett 2016;11:3795–802. 10.3892/ol.2016.4445 PubMed DOI PMC
Michielsen K, Dresen R, Vanslembrouck R, et al. . Diagnostic value of whole body diffusion-weighted MRI compared to computed tomography for pre-operative assessment of patients suspected for ovarian cancer. Eur J Cancer 2017;83:88–98. 10.1016/j.ejca.2017.06.010 PubMed DOI
Espada M, Garcia-Flores JR, Jimenez M, et al. . Diffusion-weighted magnetic resonance imaging evaluation of intra-abdominal sites of implants to predict likelihood of suboptimal cytoreductive surgery in patients with ovarian carcinoma. Eur Radiol 2013;23:2636–42. 10.1007/s00330-013-2837-7 PubMed DOI
Rizzo S, De Piano F, Buscarino V, et al. . Pre-operative evaluation of epithelial ovarian cancer patients: role of whole body diffusion weighted imaging MR and CT scans in the selection of patients suitable for primary debulking surgery. A single-centre study. Eur J Radiol 2020;123:108786. 10.1016/j.ejrad.2019.108786 PubMed DOI
Gity M, Parviz S, Saligheh Rad H, et al. . Differentiation of benign from malignant adnexal masses by dynamic contrast-enhanced MRI (DCE-MRI): quantitative and semi-quantitative analysis at 3-Tesla MRI. Asian Pac J Cancer Prev 2019;20:1073–9. 10.31557/APJCP.2019.20.4.1073 PubMed DOI PMC
Malek M, Oghabian Z, Tabibian E, et al. . Comparison of qualitative (time intensity curve analysis), semi-quantitative, and quantitative multi-phase 3T DCEMRI parameters as predictors of malignancy in adnexal. Asian Pac J Cancer Prev 2019;20:1603–11. 10.31557/APJCP.2019.20.6.1603 PubMed DOI PMC
Thomassin-Naggara I, Balvay D, Aubert E, et al. . Quantitative dynamic contrast-enhanced MR imaging analysis of complex adnexal masses: a preliminary study. Eur Radiol 2012;22:738–45. 10.1007/s00330-011-2329-6 PubMed DOI
Carter JS, Koopmeiners JS, Kuehn-Hajder JE, et al. . Quantitative multiparametric MRI of ovarian cancer. J Magn Reson Imaging 2013;38:1501–9. 10.1002/jmri.24119 PubMed DOI PMC
He M, Song Y, Li H, et al. . Histogram analysis comparison of monoexponential, advanced diffusion-weighted imaging, and dynamic contrast-enhanced MRI for differentiating borderline from malignant epithelial ovarian tumors. J Magn Reson Imaging 2020;52:257–68. 10.1002/jmri.27037 PubMed DOI
Li H-M, Feng F, Qiang J-W, et al. . Quantitative dynamic contrast-enhanced MR imaging for differentiating benign, borderline, and malignant ovarian tumors. Abdom Radiol 2018;43:3132–41. 10.1007/s00261-018-1569-1 PubMed DOI
Thomassin-Naggara I, Poncelet E, Jalaguier-Coudray A, et al. . Ovarian-Adnexal Reporting Data System Magnetic Resonance Imaging (O-RADS MRI) score for risk stratification of sonographically indeterminate adnexal masses. JAMA Netw Open 2020;3:e1919896. 10.1001/jamanetworkopen.2019.19896 PubMed DOI PMC
Dirrichs T, Bauerschlag D, Maass N, et al. . Impact of multiparametric MRI (mMRI) on the therapeutic management of adnexal masses detected with transvaginal ultrasound (TVUS): an interdisciplinary management approach. Acad Radiol 2020;S1076-6332:30652–8. PubMed
Ahmed SA, Abou-Taleb H, Yehia A, et al. . The accuracy of multi-detector computed tomography and laparoscopy in the prediction of peritoneal carcinomatosis index score in primary ovarian cancer. Acad Radiol 2019;26:1650–8. 10.1016/j.acra.2019.04.005 PubMed DOI
Byrom J, Widjaja E, Redman CWE, et al. . Can pre-operative computed tomography predict resectability of ovarian carcinoma at primary laparotomy? BJOG 2002;109:369–75. 10.1111/j.1471-0528.2002.01216.x PubMed DOI
Esquivel J, Chua TC, Stojadinovic A, et al. . Accuracy and clinical relevance of computed tomography scan interpretation of peritoneal cancer index in colorectal cancer peritoneal carcinomatosis: a multi-institutional study. J Surg Oncol 2010;102:565–70. 10.1002/jso.21601 PubMed DOI
Marin D, Catalano C, Baski M, et al. . 64-Section multi-detector row CT in the preoperative diagnosis of peritoneal carcinomatosis: correlation with histopathological findings. Abdom Imaging 2010;35:694–700. 10.1007/s00261-008-9464-9 PubMed DOI
Nasser S, Lazaridis A, Evangelou M, et al. . Correlation of pre-operative CT findings with surgical and histological tumor dissemination patterns at cytoreduction for primary advanced and relapsed epithelial ovarian cancer: a retrospective evaluation. Gynecol Oncol 2016;143:264–9. 10.1016/j.ygyno.2016.08.322 PubMed DOI
Avesani G, Arshad M, Lu H, et al. . Radiological assessment of peritoneal cancer index on preoperative CT in ovarian cancer is related to surgical outcome and survival. Radiol Med 2020;125:770–6. 10.1007/s11547-020-01170-6 PubMed DOI
Shim S-H, Lee SJ, Kim S-O, et al. . Nomogram for predicting incomplete cytoreduction in advanced ovarian cancer patients. Gynecol Oncol 2015;136:30–6. 10.1016/j.ygyno.2014.11.004 PubMed DOI
Dowdy SC, Mullany SA, Brandt KR, et al. . The utility of computed tomography scans in predicting suboptimal cytoreductive surgery in women with advanced ovarian carcinoma. Cancer 2004;101:346–52. 10.1002/cncr.20376 PubMed DOI
Nelson BE, Rosenfield AT, Schwartz PE. Preoperative abdominopelvic computed tomographic prediction of optimal cytoreduction in epithelial ovarian carcinoma. J Clin Oncol 1993;11:166–72. 10.1200/JCO.1993.11.1.166 PubMed DOI
Bristow RE, Duska LR, Lambrou NC, et al. . A model for predicting surgical outcome in patients with advanced ovarian carcinoma using computed tomography. Cancer 2000;89:1532–40. 10.1002/1097-0142(20001001)89:7<1532::aid-cncr17>3.0.co;2-a PubMed DOI
Gemer O, Gdalevich M, Ravid M, et al. . A multicenter validation of computerized tomography models as predictors of non-optimal primary cytoreduction of advanced epithelial ovarian cancer. Eur J Surg Oncol 2009;35:1109–12. 10.1016/j.ejso.2009.03.002 PubMed DOI
Axtell AE, Lee MH, Bristow RE, et al. . Multi-institutional reciprocal validation study of computed tomography predictors of suboptimal primary cytoreduction in patients with advanced ovarian cancer. J Clin Oncol 2007;25:384–9. 10.1200/JCO.2006.07.7800 PubMed DOI
Rutten MJ, van de Vrie R, Bruining A, et al. . Predicting surgical outcome in patients with International Federation of Gynecology and Obstetrics stage III or IV ovarian cancer using computed tomography: a systematic review of prediction models. Int J Gynecol Cancer 2015;25:407–15. 10.1097/IGC.0000000000000368 PubMed DOI
Kim H-J, Choi CH, Lee Y-Y, et al. . Surgical outcome prediction in patients with advanced ovarian cancer using computed tomography scans and intraoperative findings. Taiwan J Obstet Gynecol 2014;53:343–7. 10.1016/j.tjog.2013.10.041 PubMed DOI
Lu H, Arshad M, Thornton A, et al. . A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat Commun 2019;10:764. 10.1038/s41467-019-08718-9 PubMed DOI PMC
Tanizaki Y, Kobayashi A, Shiro M, et al. . Diagnostic value of preoperative SUVmax on FDG-PET/CT for the detection of ovarian cancer. Int J Gynecol Cancer 2014;24:454–60. 10.1097/IGC.0000000000000074 PubMed DOI
Kitajima K, Suzuki K, Senda M, et al. . FDG-PET/CT for diagnosis of primary ovarian cancer. Nucl Med Commun 2011;32:549–53. 10.1097/MNM.0b013e328345b339 PubMed DOI
Nam EJ, Yun MJ, Oh YT, et al. . Diagnosis and staging of primary ovarian cancer: correlation between PET/CT, Doppler US, and CT or MRI. Gynecol Oncol 2010;116:389–94. 10.1016/j.ygyno.2009.10.059 PubMed DOI
Castellucci P, Perrone AM, Picchio M, et al. . Diagnostic accuracy of 18F-FDG PET/CT in characterizing ovarian lesions and staging ovarian cancer: correlation with transvaginal ultrasonography, computed tomography, and histology. Nucl Med Commun 2007;28:589–95. 10.1097/MNM.0b013e3281afa256 PubMed DOI
Risum S, Høgdall C, Loft A, et al. . The diagnostic value of PET/CT for primary ovarian cancer--a prospective study. Gynecol Oncol 2007;105:145–9. 10.1016/j.ygyno.2006.11.022 PubMed DOI
Yamamoto Y, Oguri H, Yamada R, et al. . Preoperative evaluation of pelvic masses with combined 18F-fluorodeoxyglucose positron emission tomography and computed tomography. Int J Gynaecol Obstet 2008;102:124–7. 10.1016/j.ijgo.2008.02.019 PubMed DOI
Dauwen H, Van Calster B, Deroose CM, et al. . PET/CT in the staging of patients with a pelvic mass suspicious for ovarian cancer. Gynecol Oncol 2013;131:694–700. 10.1016/j.ygyno.2013.08.020 PubMed DOI
Laghi A, Bellini D, Rengo M, et al. . Diagnostic performance of computed tomography and magnetic resonance imaging for detecting peritoneal metastases: systematic review and meta-analysis. Radiol Med 2017;122:1–15. 10.1007/s11547-016-0682-x PubMed DOI
Kim S-J, Lee S-W. Diagnostic accuracy of 18F-FDG PET/CT for detection of peritoneal carcinomatosis; a systematic review and meta-analysis. Br J Radiol 2018;91:20170519. 10.1259/bjr.20170519 PubMed DOI PMC
Michielsen K, Vergote I, Op de Beeck K, et al. . Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT. Eur Radiol 2014;24:889–901. 10.1007/s00330-013-3083-8 PubMed DOI
Barbosa A, Peixoto A, Pinto P, et al. . Potential clinical applications of circulating cell-free DNA in ovarian cancer patients. Expert Rev Mol Med 2018;20:e6. 10.1017/erm.2018.5 PubMed DOI
Chen Q, Zhang Z-H, Wang S, et al. . Circulating cell-free DNA or circulating tumor DNA in the management of ovarian and endometrial cancer. Onco Targets Ther 2019;12:11517–30. 10.2147/OTT.S227156 PubMed DOI PMC
Giannopoulou L, Kasimir-Bauer S, Lianidou ES. Liquid biopsy in ovarian cancer: recent advances on circulating tumor cells and circulating tumor DNA. Clin Chem Lab Med 2018;56:186–97. 10.1515/cclm-2017-0019 PubMed DOI
Widschwendter M, Zikan M, Wahl B, et al. . The potential of circulating tumor DNA methylation analysis for the early detection and management of ovarian cancer. Genome Med 2017;9:116. 10.1186/s13073-017-0500-7 PubMed DOI PMC
Guo Y-X, Neoh KH, Chang X-H, et al. . Diagnostic value of HE4+ circulating tumor cells in patients with suspicious ovarian cancer. Oncotarget 2018;9:7522–33. 10.18632/oncotarget.23943 PubMed DOI PMC
Kolostova K, Matkowski R, Jędryka M, et al. . The added value of circulating tumor cells examination in ovarian cancer staging. Am J Cancer Res 2015;5:3363–75. PubMed PMC
Li B, Pu K, Ge L, et al. . Diagnostic significance assessment of the circulating cell-free DNA in ovarian cancer: an updated meta-analysis. Gene 2019;714:143993. 10.1016/j.gene.2019.143993 PubMed DOI
Li N, Zuo H, Chen L, et al. . Circulating tumor cell detection in epithelial ovarian cancer using dual-component antibodies targeting EpCAM and FRα. Cancer Manag Res 2019;11:10939–48. 10.2147/CMAR.S211455 PubMed DOI PMC
Lou E, Vogel RI, Teoh D, et al. . Assessment of circulating tumor cells as a predictive biomarker of histology in women with suspected ovarian cancer. Lab Med 2018;49:134–9. 10.1093/labmed/lmx084 PubMed DOI PMC
Phallen J, Sausen M, Adleff V, et al. . Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 2017;9:eaan2415. 10.1126/scitranslmed.aan2415 PubMed DOI PMC
Suh DH, Kim M, Choi JY, et al. . Circulating tumor cells in the differential diagnosis of adnexal masses. Oncotarget 2017;8:77195–206. 10.18632/oncotarget.20428 PubMed DOI PMC
Vanderstichele A, Busschaert P, Smeets D, et al. . Chromosomal instability in cell-free DNA as a highly specific biomarker for detection of ovarian cancer in women with adnexal masses. Clin Cancer Res 2017;23:2223–31. 10.1158/1078-0432.CCR-16-1078 PubMed DOI
Yu Z, Qin S, Wang H. Alter circulating cell-free DNA variables in plasma of ovarian cancer patients. J Obstet Gynaecol Res 2019;45:2237–42. 10.1111/jog.14102 PubMed DOI
Zhou Q, Li W, Leng B, et al. . Circulating cell free DNA as the diagnostic marker for ovarian cancer: a systematic review and meta-analysis. PLoS One 2016;11:e0155495. 10.1371/journal.pone.0155495 PubMed DOI PMC
Van Holsbeke C, Van Calster B, Guerriero S, et al. . Endometriomas: their ultrasound characteristics. Ultrasound Obstet Gynecol 2010;35:730–40. 10.1002/uog.7668 PubMed DOI
Paladini D, Testa A, Van Holsbeke C, et al. . Imaging in gynecological disease (5): clinical and ultrasound characteristics in fibroma and fibrothecoma of the ovary. Ultrasound Obstet Gynecol 2009;34:188–95. 10.1002/uog.6394 PubMed DOI
Demidov VN, Lipatenkova J, Vikhareva O, et al. . Imaging of gynecological disease (2): clinical and ultrasound characteristics of Sertoli cell tumors, Sertoli-Leydig cell tumors and Leydig cell tumors. Ultrasound Obstet Gynecol 2008;31:85–91. 10.1002/uog.5227 PubMed DOI
Savelli L, Testa AC, Timmerman D, et al. . Imaging of gynecological disease (4): clinical and ultrasound characteristics of struma ovarii. Ultrasound Obstet Gynecol 2008;32:210–9. 10.1002/uog.5396 PubMed DOI
Virgilio BA, De Blasis I, Sladkevicius P, et al. . Imaging in gynecological disease (16): clinical and ultrasound characteristics of serous cystadenofibromas in adnexa. Ultrasound Obstet Gynecol 2019;54:823–30. 10.1002/uog.20277 PubMed DOI
Moro F, Zannoni GF, Arciuolo D, et al. . Imaging in gynecological disease (11): clinical and ultrasound features of mucinous ovarian tumors. Ultrasound Obstet Gynecol 2017;50:261–70. 10.1002/uog.17222 PubMed DOI
Dierickx I, Valentin L, Van Holsbeke C, et al. . Imaging in gynecological disease (7): clinical and ultrasound features of Brenner tumors of the ovary. Ultrasound Obstet Gynecol 2012;40:706–13. 10.1002/uog.11149 PubMed DOI
Timor-Tritsch IE, Lerner JP, Monteagudo A, et al. . Transvaginal sonographic markers of tubal inflammatory disease. Ultrasound Obstet Gynecol 1998;12:56–66. 10.1046/j.1469-0705.1998.12010056.x PubMed DOI
Kurman RJ, Carcangiu ML, Herrington S. WHO classification of tumours of female reproductive organs. 4th edn. Lyon: IARC, 2014.
Franchi D, Boveri S, Fruscio R, et al. . Imaging in gynecological disease (8): ultrasound characteristics of recurrent borderline ovarian tumors. Ultrasound Obstet Gynecol 2013;41:452–8. 10.1002/uog.12276 PubMed DOI
Moro F, Baima Poma C, Zannoni GF, et al. . Imaging in gynecological disease (12): clinical and ultrasound features of invasive and non-invasive malignant serous ovarian tumors. Ultrasound Obstet Gynecol 2017;50:788–99. 10.1002/uog.17414 PubMed DOI
Landolfo C, Valentin L, Franchi D, et al. . Differences in ultrasound features of papillations in unilocular-solid adnexal cysts: a retrospective international multicenter study. Ultrasound Obstet Gynecol 2018;52:269–78. 10.1002/uog.18951 PubMed DOI
Moro F, Magoga G, Pasciuto T, et al. . Imaging in gynecological disease (13): clinical and ultrasound characteristics of endometrioid ovarian cancer. Ultrasound Obstet Gynecol 2018;52:535–43. 10.1002/uog.19026 PubMed DOI
Pozzati F, Moro F, Pasciuto T, et al. . Imaging in gynecological disease (14): clinical and ultrasound characteristics of ovarian clear cell carcinoma. Ultrasound Obstet Gynecol 2018;52:792–800. 10.1002/uog.19171 PubMed DOI
Van Holsbeke C, Domali E, Holland TK, et al. . Imaging of gynecological disease (3): clinical and ultrasound characteristics of granulosa cell tumors of the ovary. Ultrasound Obstet Gynecol 2008;31:450–6. 10.1002/uog.5279 PubMed DOI
Guerriero S, Testa AC, Timmerman D, et al. . Imaging of gynecological disease (6): clinical and ultrasound characteristics of ovarian dysgerminoma. Ultrasound Obstet Gynecol 2011;37:596–602. 10.1002/uog.8958 PubMed DOI
Anfelter P, Testa A, Chiappa V, et al. . Imaging in gynecological disease (17): ultrasound features of malignant ovarian yolk sac tumors (endodermal sinus tumors). Ultrasound Obstet Gynecol 2020;56:276–84. 10.1002/uog.22002 PubMed DOI
Corrigendum. Ultrasound Obstet Gynecol 2020;56.
Moro F, Castellano LM, Franchi D, et al. . Imaging in gynecological disease: clinical and ultrasound characteristics of ovarian embryonal carcinomas, non-gestational choriocarcinomas and malignant mixed germ cell tumors. Ultrasound Obstet Gynecol 2020. 10.1002/uog.23529. [Epub ahead of print: 03 Nov 2020]. PubMed DOI
Testa AC, Ferrandina G, Timmerman D, et al. . Imaging in gynecological disease (1): ultrasound features of metastases in the ovaries differ depending on the origin of the primary tumor. Ultrasound Obstet Gynecol 2007;29:505–11. 10.1002/uog.4020 PubMed DOI
Ludovisi M, De Blasis I, Virgilio B, et al. . Imaging in gynecological disease (9): clinical and ultrasound characteristics of tubal cancer. Ultrasound Obstet Gynecol 2014;43:328–35. 10.1002/uog.12570 PubMed DOI
International multicenter validation of AI-driven ultrasound detection of ovarian cancer