LST1/A is a myeloid leukocyte-specific transmembrane adaptor protein recruiting protein tyrosine phosphatases SHP-1 and SHP-2 to the plasma membrane
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22589543
PubMed Central
PMC3391116
DOI
10.1074/jbc.m112.339143
PII: S0021-9258(20)43452-0
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- hlavní histokompatibilní komplex fyziologie MeSH
- intracelulární signální peptidy a proteiny MeSH
- Jurkat buňky MeSH
- lidé MeSH
- membránové proteiny chemie genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- myeloidní buňky cytologie metabolismus MeSH
- plakiny metabolismus MeSH
- primární buněčná kultura MeSH
- pseudopodia metabolismus MeSH
- sekvence aminokyselin MeSH
- signální transdukce fyziologie MeSH
- terciární struktura proteinů fyziologie MeSH
- transport proteinů fyziologie MeSH
- tyrosinfosfatasa nereceptorového typu 11 metabolismus MeSH
- tyrosinfosfatasa nereceptorového typu 6 metabolismus MeSH
- U937 buňky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- intracelulární signální peptidy a proteiny MeSH
- LST1 protein, human MeSH Prohlížeč
- membránové proteiny MeSH
- plakiny MeSH
- PTPN11 protein, human MeSH Prohlížeč
- PTPN6 protein, human MeSH Prohlížeč
- tyrosinfosfatasa nereceptorového typu 11 MeSH
- tyrosinfosfatasa nereceptorového typu 6 MeSH
Transmembrane adaptor proteins are membrane-anchored proteins consisting of a short extracellular part, a transmembrane domain, and a cytoplasmic part with various protein-protein interaction motifs but lacking any enzymatic activity. They participate in the regulation of various signaling pathways by recruiting other proteins to the proximity of cellular membranes where the signaling is often initiated and propagated. In this work, we show that LST1/A, an incompletely characterized protein encoded by MHCIII locus, is a palmitoylated transmembrane adaptor protein. It is expressed specifically in leukocytes of the myeloid lineage, where it localizes to the tetraspanin-enriched microdomains. In addition, it binds SHP-1 and SHP-2 phosphatases in a phosphotyrosine-dependent manner, facilitating their recruitment to the plasma membrane. These data suggest a role for LST1/A in negative regulation of signal propagation.
J Biol Chem. 2013 Sep 27;288(39):28309 PubMed
Zobrazit více v PubMed
Holzinger I., de Baey A., Messer G., Kick G., Zwierzina H., Weiss E. H. (1995) Cloning and genomic characterization of LST1: A new gene in the human TNF region. Immunogenetics 42, 315–322 PubMed
Spies T., Blanck G., Bresnahan M., Sands J., Strominger J. L. (1989) A new cluster of genes within the human major histocompatibility complex. Science 243, 214–217 PubMed
Tsuge I., Shen F. W., Steinmetz M., Boyse E. A. (1987) A gene in the H-2S:H-2D interval of the major histocompatibility complex which is transcribed in B cells and macrophages. Immunogenetics 26, 378–380 PubMed
Gruen J. R., Weissman S. M. (2001) Human MHC class III and IV genes and disease associations. Front. Biosci. 6, D960–972 PubMed
de Baey A., Fellerhoff B., Maier S., Martinozzi S., Weidle U., Weiss E. H. (1997) Complex expression pattern of the TNF region gene LST1 through differential regulation, initiation, and alternative splicing. Genomics 45, 591–600 PubMed
Rollinger-Holzinger I., Eibl B., Pauly M., Griesser U., Hentges F., Auer B., Pall G., Schratzberger P., Niederwieser D., Weiss E. H., Zwierzina H. (2000) LST1: A gene with extensive alternative splicing and immunomodulatory function. J. Immunol. 164, 3169–3176 PubMed
Raghunathan A., Sivakamasundari R., Wolenski J., Poddar R., Weissman S. M. (2001) Functional analysis of B144/LST1: A gene in the tumor necrosis factor cluster that induces formation of long filopodia in eukaryotic cells. Exp. Cell Res. 268, 230–244 PubMed
Schiller C., Nitschké M. J., Seidl A., Kremmer E., Weiss E. H. (2009) Rat monoclonal antibodies specific for LST1 proteins. Hybridoma 28, 281–286 PubMed
Mulcahy H., O'Rourke K. P., Adams C., Molloy M. G., O'Gara F. (2006) LST1 and NCR3 expression in autoimmune inflammation and in response to IFN-γ, LPS, and microbial infection. Immunogenetics 57, 893–903 PubMed
Hrdinka M., Dráber P., Stepánek O., Ormsby T., Otáhal P., Angelisová P., Brdicka T., Paces J., Horejsí V., Drbal K. (2011) PRR7 is a transmembrane adaptor protein expressed in activated T cells involved in regulation of T cell receptor signaling and apoptosis. J. Biol. Chem. 286, 19617–19629 PubMed PMC
Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., Lopez R., Thompson J. D., Gibson T. J., Higgins D. G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 PubMed
Brdicka T., Imrich M., Angelisová P., Brdicková N., Horváth O., Spicka J., Hilgert I., Lusková P., Dráber P., Novák P., Engels N., Wienands J., Simeoni L., Osterreicher J., Aguado E., Malissen M., Schraven B., Horejsí V. (2002) Non-T cell activation linker (NTAL): A transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med. 196, 1617–1626 PubMed PMC
Wan J., Roth A. F., Bailey A. O., Davis N. G. (2007) Palmitoylated proteins: Purification and identification. Nat. Protoc. 2, 1573–1584 PubMed
Horejsí V., Zhang W., Schraven B. (2004) Transmembrane adaptor proteins: Organizers of immunoreceptor signaling. Nat. Rev. Immunol. 4, 603–616 PubMed
Daëron M., Jaeger S., Du Pasquier L., Vivier E. (2008) Immunoreceptor tyrosine-based inhibition motifs: A quest in the past and future. Immunol. Rev. 224, 11–43 PubMed
Crocker P. R., Paulson J. C., Varki A. (2007) Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 PubMed
von Gunten S., Bochner B. S. (2008) Basic and clinical immunology of Siglecs. Ann. N.Y. Acad. Sci. 1143, 61–82 PubMed PMC
Charrin S., le Naour F., Silvie O., Milhiet P. E., Boucheix C., Rubinstein E. (2009) Lateral organization of membrane proteins: Tetraspanins spin their web. Biochem. J. 420, 133–154 PubMed
Resh M. D. (2006) Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci. STKE 2006, re14. PubMed
Yáñez-Mó M., Barreiro O., Gordon-Alonso M., Sala-Valdés M., Sánchez-Madrid F. (2009) Tetraspanin-enriched microdomains: A functional unit in cell plasma membranes. Trends Cell Biol. 19, 434–446 PubMed
Brown D. A. (2006) Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology 21, 430–439 PubMed
Draber P., Vonkova I., Stepanek O., Hrdinka M., Kucova M., Skopcova T., Otahal P., Angelisova P., Horejsi V., Yeung M., Weiss A., Brdicka T. (2011) SCIMP, a transmembrane adaptor protein involved in major histocompatibility complex class II signaling. Mol. Cell. Biol. 31, 4550–4562 PubMed PMC
Walter R. B., Häusermann P., Raden B. W., Teckchandani A. M., Kamikura D. M., Bernstein I. D., Cooper J. A. (2008) Phosphorylated ITIMs enable ubiquitylation of an inhibitory cell surface receptor. Traffic 9, 267–279 PubMed
Unkeless J. C., Jin J. (1997) Inhibitory receptors, ITIM sequences, and phosphatases. Curr. Opin. Immunol. 9, 338–343 PubMed
Staub E., Rosenthal A., Hinzmann B. (2004) Systematic identification of immunoreceptor tyrosine-based inhibitory motifs in the human proteome. Cell Signal. 16, 435–456 PubMed
Wu C., Orozco C., Boyer J., Leglise M., Goodale J., Batalov S., Hodge C. L., Haase J., Janes J., Huss J. W., 3rd, Su A. I. (2009) BioGPS: An extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 10, R130. PubMed PMC
Benita Y., Cao Z., Giallourakis C., Li C., Gardet A., Xavier R. J. (2010) Gene enrichment profiles reveal T-cell development, differentiation, and lineage-specific transcription factors including ZBTB25 as a novel NF-AT repressor. Blood 115, 5376–5384 PubMed PMC
Paul S. P., Taylor L. S., Stansbury E. K., McVicar D. W. (2000) Myeloid-specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 96, 483–490 PubMed
Avril T., Floyd H., Lopez F., Vivier E., Crocker P. R. (2004) The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells. J. Immunol. 173, 6841–6849 PubMed
Ulyanova T., Shah D. D., Thomas M. L. (2001) Molecular cloning of MIS, a myeloid inhibitory siglec, that binds protein-tyrosine phosphatases SHP-1 and SHP-2. J. Biol. Chem. 276, 14451–14458 PubMed
Angelisová P., Hilgert I., Horejsí V. (1994) Association of four antigens of the tetraspans family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins. Immunogenetics 39, 249–256 PubMed
Yunta M., Lazo P. A. (2003) Tetraspanin proteins as organizers of membrane microdomains and signaling complexes. Cell Signal. 15, 559–564 PubMed
Chong Z. Z., Maiese K. (2007) The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: Diversified control of cell growth, inflammation, and injury. Histol. Histopathol. 22, 1251–1267 PubMed PMC
Tsui H. W., Siminovitch K. A., de Souza L., Tsui F. W. (1993) Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat. Genet. 4, 124–129 PubMed
Croker B. A., Lawson B. R., Rutschmann S., Berger M., Eidenschenk C., Blasius A. L., Moresco E. M., Sovath S., Cengia L., Shultz L. D., Theofilopoulos A. N., Pettersson S., Beutler B. A. (2008) Inflammation and autoimmunity caused by a SHP1 mutation depend on IL-1, MyD88, and a microbial trigger. Proc. Natl. Acad. Sci. U.S.A. 105, 15028–15033 PubMed PMC
Tsui F. W., Martin A., Wang J., Tsui H. W. (2006) Investigations into the regulation and function of the SH2 domain-containing protein-tyrosine phosphatase, SHP-1. Immunol. Res. 35, 127–136 PubMed
Yu C. C., Tsui H. W., Ngan B. Y., Shulman M. J., Wu G. E., Tsui F. W. (1996) B and T cells are not required for the viable motheaten phenotype. J. Exp. Med. 183, 371–380 PubMed PMC
Chan R. J., Leedy M. B., Munugalavadla V., Voorhorst C. S., Li Y., Yu M., Kapur R. (2005) Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Blood 105, 3737–3742 PubMed PMC
Bauler T. J., Kamiya N., Lapinski P. E., Langewisch E., Mishina Y., Wilkinson J. E., Feng G. S., King P. D. (2011) Development of severe skeletal defects in induced SHP-2-deficient adult mice: A model of skeletal malformation in humans with SHP-2 mutations. Dis. Model. Mech. 4, 228–239 PubMed PMC
An H., Zhao W., Hou J., Zhang Y., Xie Y., Zheng Y., Xu H., Qian C., Zhou J., Yu Y., Liu S., Feng G., Cao X. (2006) SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity 25, 919–928 PubMed
You M., Yu D. H., Feng G. S. (1999) Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol. Cell. Biol. 19, 2416–2424 PubMed PMC
Regulation of Inflammatory Response by Transmembrane Adaptor Protein LST1
Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case