Salt Effects on Caffeine across Concentration Regimes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38058160
PubMed Central
PMC10702535
DOI
10.1021/acs.jpcb.3c01085
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Salts affect the solvation thermodynamics of molecules of all sizes; the Hofmeister series is a prime example in which different ions lead to salting-in or salting-out of aqueous proteins. Early work of Tanford led to the discovery that the solvation of molecular surface motifs is proportional to the solvent accessible surface area (SASA), and later studies have shown that the proportionality constant varies with the salt concentration and type. Using multiscale computer simulations combined with vapor-pressure osmometry on caffeine-salt solutions, we reveal that this SASA description captures a rich set of molecular driving forces in tertiary solutions at changing solute and osmolyte concentrations. Central to the theoretical work is a new potential energy function that depends on the instantaneous surface area, salt type, and concentration. Used in, e.g., Monte Carlo simulations, this allows for a highly efficient exploration of many-body interactions and the resulting thermodynamics at elevated solute and salt concentrations.
Division of Computational Chemistry Department of Chemistry Lund University Lund SE 221 00 Sweden
Lund Institute of Advance Neutron and 10 ray Science Lund SE 223 70 Sweden
Zobrazit více v PubMed
Hofmeister F. Zur Lehre von der Wirkung der Salze. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247–260. 10.1007/BF01918191. DOI
Kunz W.; Henle J.; Ninham B. W. ’Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr. Opin. Colloid Interface Sci. 2004, 9, 19–37. 10.1016/j.cocis.2004.05.005. DOI
Kunz W.; Lo Nostro P.; Ninham B. The present state of affairs with Hofmeister effects. Curr. Opin. Colloid Interface Sci. 2004, 9, 1–18. 10.1016/j.cocis.2004.05.004. DOI
Traube J. Die Theorie des Haftdrucks (Oberflächendrucks) und ihre Bedeutung für die Physiologie. Pflugers Arch. für Gesamte Physiol. Menschen Tiere 1910, 132–132, 511–538. 10.1007/BF01679763. DOI
Kunz W. Specific ion effects in colloidal and biological systems. Curr. Opin. Colloid Interface Sci. 2010, 15, 34–39. 10.1016/j.cocis.2009.11.008. DOI
Zhang Y.; Cremer P. S. Chemistry of Hofmeister Anions and Osmolytes. Annu. Rev. Phys. Chem. 2010, 61, 63–83. 10.1146/annurev.physchem.59.032607.093635. PubMed DOI
Deyerle B. A.; Zhang Y. Effects of Hofmeister Anions on the Aggregation Behavior of PEO–PPO–PEO Triblock Copolymers. Langmuir 2011, 27, 9203–9210. 10.1021/la201463g. PubMed DOI
Yin Z.; Rajkovic I.; Kubicek K.; Quevedo W.; Pietzsch A.; Wernet P.; Föhlisch A.; Techert S. Probing the Hofmeister Effect with Ultrafast Core–Hole Spectroscopy. J. Phys. Chem. B 2014, 118, 9398–9403. 10.1021/jp504577a. PubMed DOI
Okur H. I.; Hladílková J.; Rembert K. B.; Cho Y.; Heyda J.; Dzubiella J.; Cremer P. S.; Jungwirth P. Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions. J. Phys. Chem. B 2017, 121, 1997–2014. 10.1021/acs.jpcb.6b10797. PubMed DOI
Kang B.; Tang H.; Zhao Z.; Song S. Hofmeister Series: Insights of Ion Specificity from Amphiphilic Assembly and Interface Property. ACS Omega 2020, 5, 6229–6239. 10.1021/acsomega.0c00237. PubMed DOI PMC
Rogers B. A.; Okur H. I.; Yan C.; Yang T.; Heyda J.; Cremer P. S. Weakly hydrated anions bind to polymers but not monomers in aqueous solutions. Nat. Chem. 2022, 14, 40–45. 10.1038/s41557-021-00805-z. PubMed DOI
Hervø-Hansen S.; Heyda J.; Lund M.; Matubayasi N. Anion–cation contrast of small molecule solvation in salt solutions. Phys. Chem. Chem. Phys. 2022, 24, 3238–3249. 10.1039/D1CP04129K. PubMed DOI PMC
Ries-Kautt M. M.; Ducruix A. F. Relative Effectiveness of Various Ions on the Solubility and Crystal Growth of Lysozyme. J. Biol. Chem. 1989, 264, 745–748. 10.1016/S0021-9258(19)85005-6. PubMed DOI
Finet S.; Skouri-Panet F.; Casselyn M.; Bonneté F.; Tardieu A. The Hofmeister effect as seen by SAXS in protein solutions. Curr. Opin. Colloid Interface Sci. 2004, 9, 112–116. 10.1016/j.cocis.2004.05.014. DOI
Zhang Y.; Cremer P. S. The inverse and direct Hofmeister series for lysozyme. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 15249–15253. 10.1073/pnas.0907616106. PubMed DOI PMC
Schwierz N.; Horinek D.; Netz R. R. Reversed Anionic Hofmeister Series: The Interplay of Surface Charge and Surface Polarity. Langmuir 2010, 26, 7370–7379. 10.1021/la904397v. PubMed DOI
Schwierz N.; Horinek D.; Netz R. R. Anionic and Cationic Hofmeister Effects on Hydrophobic and Hydrophilic Surfaces. Langmuir 2013, 29, 2602–2614. 10.1021/la303924e. PubMed DOI
Xie W. J.; Gao Y. Q. A simple theory for the hofmeister series. J. Phys. Chem. Lett. 2013, 4, 4247–4252. 10.1021/jz402072g. PubMed DOI
Jungwirth P.; Cremer P. S. Beyond Hofmeister. Nat. Chem. 2014, 6, 261–263. 10.1038/nchem.1899. PubMed DOI
Record M. T.; Guinn E.; Pegram L.; Capp M. Introductory Lecture: Interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model. Faraday Discuss. 2013, 160, 9–44. 10.1039/C2FD20128C. PubMed DOI PMC
Pegram L. M.; Wendorff T.; Erdmann R.; Shkel I.; Bellissimo D.; Felitsky D. J.; Record M. T. Why Hofmeister effects of many salts favor protein folding but not DNA helix formation. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 7716–7721. 10.1073/pnas.0913376107. PubMed DOI PMC
Guinn E. J.; Pegram L. M.; Capp M. W.; Pollock M. N.; Record M. T. Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 16932–16937. 10.1073/pnas.1109372108. PubMed DOI PMC
Cheng X.; Shkel I. A.; O’Connor K.; Henrich J.; Molzahn C.; Lambert D.; Record M. T. Experimental Atom-by-Atom Dissection of Amide–Amide and Amide–Hydrocarbon Interactions in H2O. J. Am. Chem. Soc. 2017, 139, 9885–9894. 10.1021/jacs.7b03261. PubMed DOI PMC
Cheng X.; Shkel I. A.; O’Connor K.; Record M. T. Experimentally determined strengths of favorable and unfavorable interactions of amide atoms involved in protein self-assembly in water. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 27339–27345. 10.1073/pnas.2012481117. PubMed DOI PMC
Pegram L. M.; Record M. T. Thermodynamic Origin of Hofmeister Ion Effects. J. Phys. Chem. B 2008, 112, 9428–9436. 10.1021/jp800816a. PubMed DOI PMC
Pegram L. M.; Record M. T. Partitioning of atmospherically relevant ions between bulk water and the water/vapor interface. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 14278–14281. 10.1073/pnas.0606256103. PubMed DOI PMC
Myers J. K.; Nick Pace C.; Martin Scholtz J. Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995, 4, 2138–2148. 10.1002/pro.5560041020. PubMed DOI PMC
Tanford C. Contribution of Hydrophobic Interactions to the Stability of the Globular Conformation of Proteins. J. Am. Chem. Soc. 1962, 84, 4240–4247. 10.1021/ja00881a009. DOI
Auton M.; Bolen D. W. Predicting the energetics of osmolyte-induced protein folding/unfolding. Proc. Natl. Acad. Sci. 2005, 102, 15065–15068. 10.1073/pnas.0507053102. PubMed DOI PMC
Auton M.; Bolen D. W.. Application of the Transfer Model to Understand How Naturally Occurring Osmolytes Affect Protein Stability; Elsevier, 2007, pp 397–418. PubMed
Bolen D. W.; Rose G. D. Structure and Energetics of the Hydrogen-Bonded Backbone in Protein Folding. Annu. Rev. Biochem. 2008, 77, 339–362. 10.1146/annurev.biochem.77.061306.131357. PubMed DOI
Guinn E. J.; Kontur W. S.; Tsodikov O. V.; Shkel I.; Record M. T. Probing the protein-folding mechanism using denaturant and temperature effects on rate constants. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 16784–16789. 10.1073/pnas.1311948110. PubMed DOI PMC
Schellman J. A. Selective binding and solvent denaturation. Biopolymers 1987, 26, 549–559. 10.1002/bip.360260408. PubMed DOI
Timasheff S. N. The Control of Protein Stability and Association by Weak Interactions with Water: How Do Solvents Affect These Processes?. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 67–97. 10.1146/annurev.bb.22.060193.000435. PubMed DOI
Timasheff S. N.Control of Protein Stability and Reactions by Weakly Interacting Cosolvents: The Simplicity of the Complicated; Elsevier, 1998; pp 355–432. PubMed
Horinek D.; Netz R. R. Can Simulations Quantitatively Predict Peptide Transfer Free Energies to Urea Solutions?. Thermodynamic Concepts and Force Field Limitations 2011, 115, 6125–6136. 10.1021/jp1110086. PubMed DOI
Moeser B.; Horinek D. Unified description of urea denaturation: Backbone and side chains contribute equally in the transfer model. J. Phys. Chem. B 2014, 118, 107–114. 10.1021/jp409934q. PubMed DOI
O’Brien E. P.; Brooks B. R.; Thirumalai D. Molecular origin of constant m-values, denatured state collapse, and residue-dependent transition midpoints in globular proteins. Biochemistry 2009, 48, 3743–3754. 10.1021/bi8021119. PubMed DOI PMC
Liu Z.; Reddy G.; O’Brien E. P.; Thirumalai D. Collapse kinetics and chevron plots from simulations of denaturant-dependent folding of globular proteins. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 7787–7792. 10.1073/pnas.1019500108. PubMed DOI PMC
Heyda J.; Dzubiella J. Thermodynamic Description of Hofmeister Effects on the LCST of Thermosensitive Polymers. J. Phys. Chem. B 2014, 118, 10979–10988. 10.1021/jp5041635. PubMed DOI
Bharadwaj S.; Nayar D.; Dalgicdir C.; van der Vegt N. F. A. A cosolvent surfactant mechanism affects polymer collapse in miscible good solvents. Commun. Chem. 2020, 3, 165.10.1038/s42004-020-00405-x. PubMed DOI PMC
Bharadwaj S.; Nayar D.; Dalgicdir C.; van der Vegt N. F. A. An interplay of excluded-volume and polymer–(co)solvent attractive interactions regulates polymer collapse in mixed solvents. J. Chem. Phys. 2021, 154, 134903.10.1063/5.0046746. PubMed DOI
Al-Maaieh A.; Flanagan D. R. Salt Effects On Caffeine Solubility, Distribution, And Self-Association. J. Pharm. Sci. 2002, 91, 1000–1008. 10.1002/jps.10046. PubMed DOI
Rogers B. A.; Thompson T. S.; Zhang Y. Hofmeister Anion Effects on Thermodynamics of Caffeine Partitioning between Aqueous and Cyclohexane Phases. J. Phys. Chem. B 2016, 120, 12596–12603. 10.1021/acs.jpcb.6b07760. PubMed DOI
Rogers B. A.; Zhang Y. Project-Based Experiment in a Physical Chemistry Teaching Laboratory: Ion Effects on Caffeine Partitioning Thermodynamics. J. Chem. Educ. 2020, 97, 4173–4178. 10.1021/acs.jchemed.0c00961. DOI
Shimizu S. Caffeine dimerization: effects of sugar, salts, and water structure. Food Funct. 2015, 6, 3228–3235. 10.1039/C5FO00610D. PubMed DOI
Sharma B.; Paul S. Effects of dilute aqueous NaCl solution on caffeine aggregation. J. Chem. Phys. 2013, 139, 194504.10.1063/1.4830414. PubMed DOI
Sharma B.; Paul S. Understanding the Role of Temperature Change and the Presence of NaCl Salts on Caffeine Aggregation in Aqueous Solution: From Structural and Thermodynamics Point of View. J. Phys. Chem. B 2015, 119, 6421–6432. 10.1021/jp512336n. PubMed DOI
Johnson N. O.; Light T. P.; MacDonald G.; Zhang Y. Anion–Caffeine Interactions Studied by 13C and 1H NMR and ATR–FTIR Spectroscopy. J. Phys. Chem. B 2017, 121, 1649–1659. 10.1021/acs.jpcb.6b12150. PubMed DOI
Eskelinen M. H.; Kivipelto M. Caffeine as a Protective Factor in Dementia and Alzheimer’s Disease. J. Alzheimer’s Dis. 2010, 20, S167–S174. 10.3233/jad-2010-1404. PubMed DOI
Postuma R. B.; Lang A. E.; Munhoz R. P.; Charland K.; Pelletier A.; Moscovich M.; Filla L.; Zanatta D.; Rios Romenets S.; Altman R.; Chuang R.; Shah B. Caffeine for treatment of Parkinson disease: A randomized controlled trial. Neurology 2012, 79, 651–658. 10.1212/wnl.0b013e318263570d. PubMed DOI PMC
Postuma R. B.; Anang J.; Pelletier A.; Joseph L.; Moscovich M.; Grimes D.; Furtado S.; Munhoz R. P.; Appel-Cresswell S.; Moro A.; Borys A.; Hobson D.; Lang A. E. Caffeine as symptomatic treatment for Parkinson disease (Café-PD). Neurology 2017, 89, 1795–1803. 10.1212/WNL.0000000000004568. PubMed DOI PMC
Tavagnacco L.; Brady J. W.; Bruni F.; Callear S.; Ricci M. A.; Saboungi M. L.; Cesàro A. Hydration of Caffeine at High Temperature by Neutron Scattering and Simulation Studies. J. Phys. Chem. B 2015, 119, 13294–13301. 10.1021/acs.jpcb.5b09204. PubMed DOI
Polák J.; Ondo D.; Heyda J. Thermodynamics of N-Isopropylacrylamide in Water: Insight from Experiments, Simulations, and Kirkwood–Buff Analysis Teamwork. J. Phys. Chem. B 2020, 124, 2495–2504. 10.1021/acs.jpcb.0c00413. PubMed DOI
Gee M. B.; Smith P. E. Kirkwood–Buff theory of molecular and protein association, aggregation, and cellular crowding. J. Chem. Phys. 2009, 131, 131.10.1063/1.3253299. PubMed DOI PMC
Van Der Spoel D.; Lindahl E.; Hess B.; Groenhof G.; Mark A. E.; Berendsen H. J. C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. 10.1002/jcc.20291. PubMed DOI
Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI
Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI
Hess B.; Bekker H.; Berendsen H. J. C.; Fraaije J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Miyamoto S.; Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. 10.1002/jcc.540130805. DOI
Case D.; et al.Amber 11; Amber, 2010.www.ambermd.org.
Case D. A.; Cheatham T. E.; Darden T.; Gohlke H.; Luo R.; Merz K. M.; Onufriev A.; Simmerling C.; Wang B.; Woods R. J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. 10.1002/jcc.20290. PubMed DOI PMC
Wernersson E.; Jungwirth P. Effect of water polarizability on the properties of solutions of polyvalent ions: Simulations of aqueous sodium sulfate with different force fields. J. Chem. Theory Comput. 2010, 6, 3233–3240. 10.1021/ct100465g. PubMed DOI
Caldwell J. W.; Kollman P. A. Structure and Properties of Neat Liquids Using Nonadditive Molecular-Dynamics - Water, Methanol, and N-Methylacetamide. J. Phys. Chem. 1995, 99, 6208–6219. 10.1021/j100016a067. DOI
Berendsen H. J. C.; Postma J. P. M.; Vangunsteren W. F.; Dinola A.; Haak J. R. Molecular-Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. 10.1063/1.448118. DOI
Ryckaert J. P.; Ciccotti G.; Berendsen H. J. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. 10.1016/0021-9991(77)90098-5. DOI
Sanjeewa R.; Weerasinghe S. Development of a molecular mechanics force field for caffeine to investigate the interactions of caffeine in different solvent media. J. Mol. Struct.: THEOCHEM 2010, 944, 116–123. 10.1016/j.theochem.2009.12.027. DOI
Sanjeewa R.; Weerasinghe S. Study of aggregate formation of caffeine in water by molecular dynamics simulation. Comput. Theor. Chem. 2011, 966, 140–148. 10.1016/j.comptc.2011.02.027. DOI
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI
Křížek T.; Kubíčková A.; Hladílková J.; Coufal P.; Heyda J.; Jungwirth P. Electrophoretic mobilities of neutral analytes and electroosmotic flow markers in aqueous solutions of Hofmeister salts. Electrophoresis 2014, 35, 617–624. 10.1002/elps.201300544. PubMed DOI
Hine J.; Mookerjee P. K. Structural effects on rates and equilibriums. XIX. Intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions. J. Org. Chem. 1975, 40, 292–298. 10.1021/jo00891a006. DOI
Metropolis N.; Rosenbluth A. W.; Rosenbluth M. N.; Teller A. H.; Teller E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087–1092. 10.1063/1.1699114. DOI
Stenqvist B.; Thuresson A.; Kurut A.; Vácha R.; Lund M. Faunus– a flexible framework for Monte Carlo simulation. Mol. Simul. 2013, 39, 1233–1239. 10.1080/08927022.2013.828207. DOI
Lund M.; Trulsson M.; Persson B. Faunus: An object oriented framework for molecular simulation. Source Code Biol. Med. 2008, 3, 1.10.1186/1751-0473-3-1. PubMed DOI PMC
Weeks J. D.; Chandler D.; Andersen H. C. Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids. J. Chem. Phys. 1971, 54, 5237–5247. 10.1063/1.1674820. DOI
Harismiadis V. I.; Vorholz J.; Panagiotopoulos A. Z. Efficient pressure estimation in molecular simulations without evaluating the virial. J. Chem. Phys. 1996, 105, 8469–8470. 10.1063/1.472721. DOI
Widom B. Some Topics in the Theory of Fluids. J. Chem. Phys. 1963, 39, 2808–2812. 10.1063/1.1734110. DOI
Johnson J. K.; Panagiotopoulos A. Z.; Gubbins K. E. Reactive canonical Monte Carlo. Mol. Phys. 1994, 81, 717–733. 10.1080/00268979400100481. DOI
Smith P. E. On the Kirkwood-Buff inversion procedure. J. Chem. Phys. 2008, 129, 124509.10.1063/1.2982171. PubMed DOI PMC
Thomas A. S.; Elcock A. H. Molecular dynamics simulations of hydrophobic associations in aqueous salt solutions indicate a connection between water hydrogen bonding and the hofmeister effect. J. Am. Chem. Soc. 2007, 129, 14887–14898. 10.1021/ja073097z. PubMed DOI
Okamoto R.; Koga K. Theory of Gas Solubility and Hydrophobic Interaction in Aqueous Electrolyte Solutions. J. Phys. Chem. B 2021, 125, 12820–12831. 10.1021/acs.jpcb.1c08050. PubMed DOI
Shalmashi A.; Golmohammad F. Solubility of caffeine in water, ethyl acetate, ethanol, carbon tetrachloride, methanol, chloroform, dichloromethane, and acetone between 298 and 323 K. Lat. Am. Appl. Res. 2010, 40, 283–285.
Smith P. E.; Mazo R. M. On the Theory of Solute Solubility in Mixed Solvents. J. Phys. Chem. B 2008, 112, 7875–7884. 10.1021/jp712179w. PubMed DOI PMC
Žółkiewski M. Kirkwood-Buff integrals and density fluctuations in aqueous solution of caffeine. J. Solution Chem. 1987, 16, 1025–1034. 10.1007/BF00652586. DOI
Cesaro A.; Russo E.; Crescenzi V. Thermodynamics of caffeine aqueous solutions. J. Phys. Chem. 1976, 80, 335–339. 10.1021/j100544a026. DOI
Falk M.; Chew W.; Walter J. A.; Kwiatkowski W.; Barclay K. D.; Klassen G. A. Molecular modelling and NMR studies of the caffeine dimer. Can. J. Chem. 1998, 76, 48–56. 10.1139/v97-211. DOI
Tavagnacco L.; Gerelli Y.; Cesàro A.; Brady J. W. Stacking and Branching in Self-Aggregation of Caffeine in Aqueous Solution: From the Supramolecular to Atomic Scale Clustering. J. Phys. Chem. B 2016, 120, 9987–9996. 10.1021/acs.jpcb.6b06980. PubMed DOI
Ben-Naim A.Statistical Thermodynamics for Chemists and Biochemists; Plenum: New York, 1992.
Kurut A.; Lund M. Solution electrostatics beyond pH: a coarse grained approach to ion specific interactions between macromolecules. Faraday Discuss. 2013, 160, 271–278. 10.1039/C2FD20073B. PubMed DOI
Harvey A.; Lemmon E.. NIST/ASME Steam Properties. Version 3.0; NIST, 2013.
Origlia-Luster M. L.; Patterson B. A.; Woolley E. M. Thermodynamics for self-association of caffeine in water: Apparent molar volumes and apparent molar heat capacities of aqueous caffeine at temperatures from 278.15 to 393.15 K and at the pressure 0.35 MPa. J. Chem. Thermodyn. 2002, 34, 1909–1921. 10.1016/S0021-9614(02)00263-X. DOI