Faunus: An object oriented framework for molecular simulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
18241331
PubMed Central
PMC2266748
DOI
10.1186/1751-0473-3-1
PII: 1751-0473-3-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND: We present a C++ class library for Monte Carlo simulation of molecular systems, including proteins in solution. The design is generic and highly modular, enabling multiple developers to easily implement additional features. The statistical mechanical methods are documented by extensive use of code comments that - subsequently - are collected to automatically build a web-based manual. RESULTS: We show how an object oriented design can be used to create an intuitively appealing coding framework for molecular simulation. This is exemplified in a minimalistic C++ program that can calculate protein protonation states. We further discuss performance issues related to high level coding abstraction. CONCLUSION: C++ and the Standard Template Library (STL) provide a high-performance platform for generic molecular modeling. Automatic generation of code documentation from inline comments has proven particularly useful in that no separate manual needs to be maintained.
Zobrazit více v PubMed
Metropolis NA, Rosenbluth AW, Rosenbluth MN, Teller A, Teller E. Equation of State Calculations by Fast Computing Machines. J Chem Phys. 1953;21:1087–1097. doi: 10.1063/1.1699114. DOI
Kamberaj H, Helms V. Monte Carlo simulation of biomolecular systems with BIOMCSIM. Computer Physics Communications. 2001;141:375–402. doi: 10.1016/S0010-4655(01)00434-9. DOI
Carlsson F, Malmsten M, Linse P. Monte Carlo Simulations of Lysozyme Self-Association in Aqueous Solution. J Phys Chem. 2001;105:12189–12195.
Hu J, Ma A, Dinner AR. Monte Carlo simulations of biomolecules: The MC module in CHARMM. J Comp Chem. 2006;27:203–216. doi: 10.1002/jcc.20327. PubMed DOI
Frenkel D, Smit B. Understanding Molecular Simulation. San Diego: Academic Press; 1996.
Stroustrup B. The C++ Programming Language. 3. Boston: Addison-Wesley; 1997.
MDAPI
Object-Oriented Model for Probing Assemblages of Atoms
Berendsen H, Spoel D, Drunen R. GROMACS: A message passing parallel molecular dynamics implementation. Comp Phys Comm. 1995;91:43–56. doi: 10.1016/0010-4655(95)00042-E. DOI
Veldhuizen T. Expression Templates. C++ Report. 1995;7:26–31.
Meloni S, Rosati M, Colombo L. Efficient particle labeling in atomistic simulations. J Chem Phys. 2007;126:121102. doi: 10.1063/1.2719690. PubMed DOI
Dagum L, Menon R. OpenMP: An Industry-Standard API for Shared-Memory Programming. IEEE Computational Science and Engineering. 1998;05:46–55. doi: 10.1109/99.660313. DOI
Doxygen
Hill TL. An Introduction to Statistical Thermodynamics. New York: Dover Publications Inc; 1986.
Lund M. PhD Thesis: Electrostatic Interactions in and between bio-molecules. Lund, Sweden: Lund University; 2006.
Lund M, Jönsson B. On the charge regulation of proteins. Biochemistry. 2005;44:5722–5727. doi: 10.1021/bi047630o. PubMed DOI
Humphrey W, Dalke A, Schulten K. VMD – Visual Molecular Dynamics. J Mol Graphics. 1996;14:27-8–33-8. PubMed
Tanford C, Roxby R. Interpretation of protein titration curves. Application to lysozyme. Biochemistry. 1972;11:2192–2198. doi: 10.1021/bi00761a029. PubMed DOI
Lund M, Jonsson B, Woodward CE. Implications of a high dielectric constant in proteins. J Chem Phys. 2007;126:225103. doi: 10.1063/1.2741543. PubMed DOI
POV-Ray – The Persistence of Vision Raytracer
Salt Effects on Caffeine across Concentration Regimes