Unveiling the Borohydride Ion through Force-Field Development

. 2024 Feb 13 ; 20 (3) : 1263-1273. [epub] 20240116

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38227434

The borohydride ion, BH4-, is an essential reducing agent in many technological processes, yet its full understanding has been elusive, because of at least two significant challenges. One challenge arises from its marginal stability in aqueous solutions outside of basic pH conditions, which considerably limits the experimental thermodynamic data. The other challenge comes from its unique and atypical hydration shell, stemming from the negative excess charge on its hydrogen atoms, which complicates the accurate modeling in classical atomistic simulations. In this study, we combine experimental and computer simulation techniques to devise a classical force field for NaBH4 and deepen our understanding of its characteristics. We report the first measurement of the ion's activity coefficient and extrapolate it to neutral pH conditions. Given the difficulties in directly measuring its solvation free energies, owing to its instability, we resort to quantum chemistry calculations. This combined strategy allows us to derive a set of nonpolarizable force-field parameters for the borohydride ion for classical molecular dynamics simulations. The derived force field simultaneously captures the solvation free energy, the hydration structure, as well as the activity coefficient of NaBH4 salt across a broad concentration range. The obtained insights into the hydration shell of the BH4- ion are crucial for accurately modeling and understanding its interactions with other molecules, ions, materials, and interfaces.

Zobrazit více v PubMed

Braesch G.; Wang Z.; Sankarasubramanian S.; Oshchepkov A. G.; Bonnefont A.; Savinova E. R.; Ramani V.; Chatenet M. A high performance direct borohydride fuel cell using bipolar interfaces and noble metal-free Ni-based anodes. J. Mater. Chem. A 2020, 8, 20543–20552. 10.1039/D0TA06405J. DOI

Li H.-W.; Yan Y.; Orimo S. i.; Züttel A.; Jensen C. M. Recent Progress in Metal Borohydrides for Hydrogen Storage. Energies 2011, 4, 185–214. 10.3390/en4010185. DOI

Santos D.; Sequeira C. Sodium borohydride as a fuel for the future. Renew. Sustain. Energy Rev. 2011, 15, 3980–4001. 10.1016/j.rser.2011.07.018. DOI

Herves P.; Pérez-Lorenzo M.; Liz-Marzán L. M.; Dzubiella J.; Lu Y.; Ballauff M. Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem. Soc. Rev. 2012, 41, 5577–5587. 10.1039/c2cs35029g. PubMed DOI

Roa R.; Kim W. K.; Kanduč M.; Dzubiella J.; Angioletti-Uberti S. Catalyzed bimolecular reactions in responsive nanoreactors. ACS Catal. 2017, 7, 5604–5611. 10.1021/acscatal.7b01701. PubMed DOI PMC

Wang Y.; Liu X. Catalytic hydrolysis of sodium borohydride for hydrogen production using magnetic recyclable CoFe2O4-modified transition-metal nanoparticles. ACS Appl. Nano Mater. 2021, 4, 11312–11320. 10.1021/acsanm.1c03067. DOI

Minkina V. G.; Shabunya S. I.; Kalinin V. I.; Martynenko V. V. Hydrogen generation from hydrolysis of concentrated NaBH4 solutions under adiabatic conditions. Int. J. Hydrogen Energy 2022, 47, 21772–21781. 10.1016/j.ijhydene.2022.05.006. DOI

Giammanco C. H.; Kramer P. L.; Fayer M. D. Dynamics of Dihydrogen Bonding in Aqueous Solutions of Sodium Borohydride. J. Phys. Chem. B 2015, 119, 3546–3559. 10.1021/jp512426y. PubMed DOI

Mohtadi R.; Remhof A.; Jena P. Complex metal borohydrides: multifunctional materials for energy storage and conversion. J. Phys.: Condens. Matter 2016, 28, 353001.10.1088/0953-8984/28/35/353001. PubMed DOI

Yang L.; Hubbard T. A.; Cockroft S. L. Can non-polar hydrogen atoms accept hydrogen bonds?. Chem. Commun. 2014, 50, 5212–5214. 10.1039/C3CC46048G. PubMed DOI

Minkina V. G.; Shabunya S. I.; Kalinin V. I.; Martynenko V. V.; Smirnova A. L. Stability of alkaline aqueous solutions of sodium borohydride. Int. J. Hydrogen Energy 2012, 37, 3313–3318. 10.1016/j.ijhydene.2011.10.068. DOI

Wang K.; Lu J.; Zhuang L. Direct determination of diffusion coefficient for borohydride anions in alkaline solutions using chronoamperometry with spherical Au electrodes. J. Electroanal. Chem. 2005, 585, 191–196. 10.1016/j.jelechem.2005.08.009. DOI

Duffin A. M.; England A. H.; Schwartz C. P.; Uejio J. S.; Dallinger G. C.; Shih O.; Prendergast D.; Saykally R. J. Electronic structure of aqueous borohydride: a potential hydrogen storage medium. Phys. Chem. Chem. Phys. 2011, 13, 17077–17083. 10.1039/c1cp21788g. PubMed DOI

Sambasivarao S. V.; Acevedo O. Development of OPLS-AA Force Field Parameters for 68 Unique Ionic Liquids. J. Chem. Theory Comput. 2009, 5, 1038–1050. 10.1021/ct900009a. PubMed DOI

Śmiechowski M. Anion–water interactions of weakly hydrated anions: molecular dynamics simulations of aqueous NaBF4 and NaPF6. Mol. Phys. 2016, 114, 1831–1846. 10.1080/00268976.2016.1157219. DOI

Fanfrlík J.; Lepšík M.; Horinek D.; Havlas Z.; Hobza P. Interaction of Carboranes with Biomolecules: Formation of Dihydrogen Bonds. ChemPhysChem 2006, 7, 1100–1105. 10.1002/cphc.200500648. PubMed DOI

Bayly C. I.; Cieplak P.; Cornell W.; Kollman P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 1993, 97, 10269–10280. 10.1021/j100142a004. DOI

Zhou Y.; Yamaguchi T.; Yoshida K.; Fang C.; Fang Y.; Zhu F. Structure of alkaline aqueous NaBH4 solutions by X-ray scattering and empirical potential structure refinement. J. Mol. Liq. 2019, 274, 173–182. 10.1016/j.molliq.2018.10.124. DOI

Zhou Y.; Yoshida K.; Yamaguchi T.; Liu H.; Fang C.; Fang Y. Microhydration of BH 4–: Dihydrogen Bonds, Structure, Stability, and Raman Spectra. J. Phys. Chem. A 2017, 121, 9146–9155. 10.1021/acs.jpca.7b09703. PubMed DOI

Weerasinghe S.; Smith P. E. A Kirkwood–Buff derived force field for sodium chloride in water. J. Chem. Phys. 2003, 119, 11342–11349. 10.1063/1.1622372. DOI

Gee M. B.; Cox N. R.; Jiao Y.; Bentenitis N.; Weerasinghe S.; Smith P. E. A Kirkwood-Buff Derived Force Field for Aqueous Alkali Halides. J. Chem. Theory Comput. 2011, 7, 1369–1380. 10.1021/ct100517z. PubMed DOI PMC

Fyta M.; Kalcher I.; Dzubiella J.; Vrbka L.; Netz R. R. Ionic force field optimization based on single-ion and ion-pair solvation properties. J. Chem. Phys. 2010, 132, 024911.10.1063/1.3292575. PubMed DOI

Bonthuis D. J.; Mamatkulov S. I.; Netz R. R. Optimization of classical nonpolarizable force fields for OH– and H3O+. J. Chem. Phys. 2016, 144, 104503.10.1063/1.4942771. PubMed DOI

Pitzer K. S.; Kim J. J. Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 1974, 96, 5701–5707. 10.1021/ja00825a004. DOI

Pliego J. R.; Riveros J. M. The Cluster–Continuum Model for the Calculation of the Solvation Free Energy of Ionic Species. J. Phys. Chem. A 2001, 105, 7241–7247. 10.1021/jp004192w. DOI

Tomaník L.; Muchová E.; Slavíček P. Solvation energies of ions with ensemble cluster-continuum approach. Phys. Chem. Chem. Phys. 2020, 22, 22357–22368. 10.1039/D0CP02768E. PubMed DOI

Bryantsev V. S.; Diallo M. S. III; Goddard III W. A. Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models. J. Phys. Chem. B 2008, 112, 9709–9719. 10.1021/jp802665d. PubMed DOI

Møller C.; Plesset M. S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622. 10.1103/PhysRev.46.618. DOI

Mennucci B.; Tomasi J. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 1997, 106, 5151–5158. 10.1063/1.473558. DOI

Cancès E.; Mennucci B.; Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. 10.1063/1.474659. DOI

Bondi A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. 10.1021/j100785a001. DOI

Frisch M.; et al.Gaussian 09, Revision, D.01; Gaussian Inc.: Wallingford CT, 2009.

Klamt A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224–2235. 10.1021/j100007a062. DOI

Klamt A.; Jonas V.; Bürger T.; Lohrenz J. C. W. Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 1998, 102, 5074–5085. 10.1021/jp980017s. DOI

Eckert F.; Klamt A. Fast solvent screening via quantum chemistry: COSMO-RS approach. AlChE J. 2002, 48, 369–385. 10.1002/aic.690480220. DOI

Tomaník L.; Rulíšek L.; Slavíček P. Redox Potentials with COSMO-RS: Systematic Benchmarking with Different Databases. J. Chem. Theory Comput. 2023, 19, 1014–1022. 10.1021/acs.jctc.2c00919. PubMed DOI

Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. 10.1103/PhysRevA.38.3098. PubMed DOI

Vosko S. H.; Wilk L.; Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980, 58, 1200–1211. 10.1139/p80-159. DOI

Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 33, 8822–8824. 10.1103/PhysRevB.33.8822. PubMed DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI

Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI

Weigend F.; Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. 10.1039/b508541a. PubMed DOI

Rappoport D.; Furche F. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010, 133, 134105.10.1063/1.3484283. PubMed DOI

TURBOMOLE V7.0, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007; TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI

Ufimtsev I. S.; Luehr N.; Martinez T. J. Charge Transfer and Polarization in Solvated Proteins from Ab Initio Molecular Dynamics. J. Phys. Chem. Lett. 2011, 2, 1789–1793. 10.1021/jz200697c. DOI

Ufimtsev I. S.; Martinez T. J. Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 2009, 5, 2619–2628. 10.1021/ct9003004. PubMed DOI

Titov A. V.; Ufimtsev I. S.; Luehr N.; Martinez T. J. Generating efficient quantum chemistry codes for novel architectures. J. Chem. Theory Comput. 2013, 9, 213–221. 10.1021/ct300321a. PubMed DOI

Polák J.; Ondo D.; Heyda J. Thermodynamics of N-Isopropylacrylamide in Water: Insight from Experiments, Simulations, and Kirkwood-Buff Analysis Teamwork. J. Phys. Chem. B 2020, 124, 2495–2504. 10.1021/acs.jpcb.0c00413. PubMed DOI

Wernersson E.; Heyda J.; Vazdar M.; Lund M.; Mason P. E.; Jungwirth P. Orientational Dependence of the Affinity of Guanidinium Ions to the Water Surface. J. Phys. Chem. B 2011, 115, 12521–12526. 10.1021/jp207499s. PubMed DOI

Rogers B. A.; Okur H. I.; Yan C.; Yang T.; Heyda J.; Cremer P. S. Weakly hydrated anions bind to polymers but not monomers in aqueous solutions. Nat. Chem. 2022, 14, 40–45. 10.1038/s41557-021-00805-z. PubMed DOI

Berendsen H.; van der Spoel D.; van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56. 10.1016/0010-4655(95)00042-e. DOI

Lindahl E.; Hess B.; van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J. Mol. Model. 2001, 7, 306–317. 10.1007/s008940100045. DOI

Darden T.; York D.; Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI

Sprik M.; Hutter J.; Parrinello M. Ab initio molecular dynamics simulation of liquid water: Comparison of three gradient-corrected density functionals. J. Chem. Phys. 1996, 105, 1142–1152. 10.1063/1.471957. DOI

Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI

Ryckaert J.-P.; Ciccotti G.; Berendsen H. J. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. 10.1016/0021-9991(77)90098-5. DOI

Tissandier M. D.; Cowen K. A.; Feng W. Y.; Gundlach E.; Cohen M. H.; Earhart A. D.; Coe J. V.; Tuttle T. R. The Proton’s Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data. J. Phys. Chem. A 1998, 102, 7787–7794. 10.1021/jp982638r. DOI

Mamatkulov S.; Fyta M.; Netz R. R. Force fields for divalent cations based on single-ion and ion-pair properties. J. Chem. Phys. 2013, 138, 024505.10.1063/1.4772808. PubMed DOI

Horinek D.; Mamatkulov S. I.; Netz R. R. Rational design of ion force fields based on thermodynamic solvation properties. J. Chem. Phys. 2009, 130, 124507.10.1063/1.3081142. PubMed DOI

Dang L. X.; Smith D. E. Molecular dynamics simulations of aqueous ionic clusters using polarizable water. J. Chem. Phys. 1993, 99, 6950–6956. 10.1063/1.465441. DOI

Marcus Y.Ion Properties; Marcel Dekker, Inc.: New York, Basel, 1997.

Marcus Y. Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. J. Chem. Soc., Faraday Trans. 1991, 87, 2995–2999. 10.1039/FT9918702995. DOI

Kirkwood J. G.; Buff F. P. The Statistical Mechanical Theory of Solutions. I. J. Chem. Phys. 1951, 19, 774–777. 10.1063/1.1748352. DOI

Krüger P.; Schnell S. K.; Bedeaux D.; Kjelstrup S.; Vlugt T. J. H.; Simon J.-M. Kirkwood–Buff Integrals for Finite Volumes. J. Phys. Chem. Lett. 2013, 4, 235–238. 10.1021/jz301992u. PubMed DOI

Stockmayer W. H.; Rice D. W.; Stephenson C. C. Thermodynamic Properties of Sodium Borohydride and Aqueous Borohydride Ion. J. Am. Chem. Soc. 1955, 77, 1980–1983. 10.1021/ja01612a082. DOI

Marcus Y. Effect of Ions on the Structure of Water: Structure Making and Breaking. Chem. Rev. 2009, 109, 1346–1370. 10.1021/cr8003828. PubMed DOI

Breneman C. M.; Wiberg K. B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 1990, 11 (3), 361–373. 10.1002/jcc.540110311. DOI

Lum K.; Chandler D.; Weeks J. D. Hydrophobicity at Small and Large Length Scales. J. Phys. Chem. B 1999, 103, 4570–4577. 10.1021/jp984327m. DOI

Oostenbrink C.; Villa A.; Mark A. E.; Van Gunsteren W. F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 2004, 25, 1656–1676. 10.1002/jcc.20090. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace