Effect of the physicochemical changes in the antimicrobial durability of green synthesized silver nanoparticles during their long-term storage

. 2022 Oct 24 ; 12 (47) : 30386-30403. [epub] 20221025

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36349158

It is generally recognized that the stability of nanoparticles (NPs) has a great impact on their potential biological applications. Despite this, very few studies have investigated the change in toxicity of NPs over time but none has studied the periodic physicochemical changes contributing to it. To address this, we analyzed the effects of long-term storage on the physicochemical changes of green synthesized silver nanoparticles (AgNPs) that directly influences their antimicrobial durability. Light-induced slow synthesis of AgNPs was carried out using Saraca asoca aqueous leaf extract. The synthesis was optimized with respect to parameters known to play a major role in the long-term stability of AgNPs: pH, temperature, light exposure time, AgNO3 concentration, extract proportion in the reaction mixture and storage conditions. Freshly synthesized AgNPs were characterized and then stored under optimized conditions. UV-vis spectrophotometry, AAS, conventional TEM and HR-TEM along with EDX spectroscopy were used at regular intervals to test the physicochemical properties that influence their long-term stability. Broth dilution assay was used to test antimicrobial activity of AgNPs against Escherichia coli and Staphylococcus aureus. Under dark storage conditions at room temperature, the AgNPs exhibited excellent stability with very good dispersity, throughout the study period of 18 months, despite the particles undergoing physicochemical changes in largescale. AgNPs exhibited sufficient antimicrobial activity against both strains tested. Due to the stronger stabilizing effect of the extract, we observed the lowest inhibition of E. coli and S. aureus by the freshly synthesized and 15 day old AgNPs; however, the inhibition rate escalated after a month and the highest rate of inhibition was observed with the particles between 2 months to 6 months of storage. After 6 months, we observed the particles losing their antimicrobial potential gradually, that lasted throughout the rest of our study period. This observation was in accord with the physicochemical changes that AgNPs were undergoing with time. By deepening our understanding of the changes in the physicochemical properties of green synthesized AgNPs over time, this study contributes to the development of more effective, durable, and potent AgNPs.

Zobrazit více v PubMed

Balashanmugam P. Balakumaran M. D. Murugan R. Dhanapal K. Kalaichelvan P. T. Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol. Res. 2016;192:52–64. doi: 10.1016/j.micres.2016.06.004. PubMed DOI

Ahmed S. Ahmad M. Swami B. L. Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 2016;7(1):17–28. doi: 10.1016/j.jare.2015.02.007. PubMed DOI PMC

Niska K. Zielinska E. Radomski M. W. Inkielewicz-Stepniak I. Metal nanoparticles in dermatology and cosmetology: interactions with human skin cells. Chem.-Biol. Interact. 2018;295:38–51. doi: 10.1016/j.cbi.2017.06.018. PubMed DOI

Aziz Z. A. A. et al. , Role of Nanotechnology for Design and Development of Cosmeceutical: Application in Makeup and Skin Care. Front. Chem. 2019;7:739. doi: 10.3389/fchem.2019.00739. PubMed DOI PMC

Parmar M. Sanyal M. Extensive study on plant mediated green synthesis of metal nanoparticles and their application for degradation of cationic and anionic dyes. Environ. Nanotechnol., Monit. Manage. 2022;17:100624. doi: 10.1016/j.enmm.2021.100624. DOI

Syafiuddin A. et al. , Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. RSC Adv. 2016;4(1):181–186. doi: 10.1038/s41598-017-12804-7. PubMed DOI

Sharma D. Kanchi S. Bisetty K. Biogenic synthesis of nanoparticles: a review. Arabian J. Chem. 2019;12(8):3576–3600.

Kameswara Srikar S. Giri D. D. Pal D. B. Mishra P. K. Upadhyay S. N. Green Synthesis of Silver Nanoparticles: A Review. Green Sustainable Chem. 2016;6(6):34–56. doi: 10.4236/gsc.2016.61004. DOI

Sim W. Barnard R. T. Blaskovich M. A. T. Ziora Z. M. Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007–2017) Antibiotics. 2018;7(4):93. doi: 10.3390/antibiotics7040093. PubMed DOI PMC

Panáček A. et al. , Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 2018;13(1):65–71. doi: 10.1038/s41565-017-0013-y. PubMed DOI

Habibullah G. Viktorova J. Ruml T. Current Strategies for Noble Metal Nanoparticle Synthesis. Nanoscale Res. Lett. 2021;16(1):47. doi: 10.1186/s11671-021-03480-8. PubMed DOI PMC

Azharuddin M. et al. , A repertoire of biomedical applications of noble metal nanoparticles. Chem. Commun. 2019;55(49):6964–6996. doi: 10.1039/c9cc01741k. PubMed DOI

Akintelu S. A. Olugbeko S. C. Folorunso A. S. Oyebamiji A. K. Folorunso F. A. Potentials of phytosynthesized silver nanoparticles in biomedical fields: a review. Int. Nano Lett. 2021;11(3):273–293. doi: 10.1007/s40089-021-00341-1. DOI

Rai M. K. Deshmukh S. D. Ingle A. P. Gade A. K. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012;112(5):841–852. doi: 10.1111/j.1365-2672.2012.05253.x. PubMed DOI

Sharma D. et al. , Insights into the synthesis and mechanism of green synthesized antimicrobial nanoparticles, answer to the multidrug resistance. Mater. Today Chem. 2021;19:100391. doi: 10.1016/J.MTCHEM.2020.100391. DOI

Li P. Li J. Wu C. Wu Q. Li J. Synergistic antibacterial effects of ?-lactam antibiotic combined with silver nanoparticles. Nanotechnology. 2005;16(9):1912–1917. doi: 10.1088/0957-4484/16/9/082. DOI

Naqvi S. Z. H. et al. , Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int. J. Nanomed. 2013;8:3187–3195. doi: 10.2147/IJN.S49284. PubMed DOI PMC

Korshed P. Li L. Ngo D.-T. Wang T. Effect of storage conditions on the long-term stability of bactericidal effects for laser generated silver nanoparticles. Nanomaterials. 2018;8(4):218. doi: 10.3390/nano8040218. PubMed DOI PMC

Izak-Nau E. et al. , Impact of storage conditions and storage time on silver nanoparticles' physicochemical properties and implications for their biological effects. RSC Adv. 2015;5(102):84172–84185. doi: 10.1039/C5RA10187E. DOI

Kittler S. Greulich C. Diendorf J. Köller M. Epple M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 2010;22(16):4548–4554. doi: 10.1021/cm100023p. DOI

Vera V. Ferreira M. J. Silva R. Santos H. A. Silva F. Pereira C. M. Long time effect on the stability of silver nanoparticles in aqueous medium: effect of the synthesis and storage conditions. Colloids Surf., A. 2010;364(1–3):19–25. doi: 10.1016/j.colsurfa.2010.04.015. DOI

El Badawy A. M. Silva R. G. Morris B. Scheckel K. G. Suidan M. T. Tolaymat T. M. Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 2011;45(1):283–287. doi: 10.1021/es1034188. PubMed DOI

Chen J. Li S. Luo J. Wang R. Ding W. Enhancement of the antibacterial activity of silver nanoparticles against phytopathogenic bacterium Ralstonia solanacearum by stabilization. J. Nanomater. 2016:7135852. doi: 10.1155/2016/7135852. DOI

Siddiqi K. S. Husen A. Rao R. A. K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018;16(1):14. doi: 10.1186/s12951-018-0334-5. PubMed DOI PMC

Syafiuddin A. Salmiati Salim M. R. Beng Hong Kueh A. Hadibarata T. Nur H. A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges. J. Chin. Chem. Soc. 2017;64(7):732–756. doi: 10.1002/jccs.201700067. DOI

Jadoun S. Arif R. Jangid N. K. Meena R. K. Green synthesis of nanoparticles using plant extracts: a review. Environ. Chem. Lett. 2021;19(1):355–374. doi: 10.1007/s10311-020-01074-x. DOI

Velgosova O. Čižmárová E. Málek J. Kavuličova J. Effect of storage conditions on long-term stability of Ag nanoparticles formed via green synthesis. Int. J. Miner., Metall. Mater. 2017;24(10):1177–1182. doi: 10.1007/s12613-017-1508-0. DOI

Hoang V.-T. et al. , Functionalized-AgNPs for Long-Term Stability and Its Applicability in the Detection of Manganese Ions. Adv. Polym. Technol. 2020;2020:9437108. doi: 10.1155/2020/9437108. DOI

Gavamukulya Y. et al. , Green Synthesis and Characterization of Highly Stable Silver Nanoparticles from Ethanolic Extracts of Fruits of Annona muricata. J. Inorg. Organomet. Polym. Mater. 2020;30(4):1231–1242. doi: 10.1007/S10904-019-01262-5. DOI

Cyril N. George J.B. Joseph L. Raghavamenon A. C. Sylas V. P. Assessment of antioxidant, antibacterial and anti-proliferative (lung cancer cell line A549) activities of green synthesized silver nanoparticles from Derris trifoliata. Toxicol. Res. 2019;8(2):297–308. doi: 10.1039/c8tx00323h. PubMed DOI PMC

Khorrami S. Zarrabi A. Khaleghi M. Danaei M. Mozafari M. R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomed. 2018;13:8013–8024. doi: 10.2147/IJN.S189295. PubMed DOI PMC

Hileuskaya K. et al. , ‘Green’ approach for obtaining stable pectin-capped silver nanoparticles: physico-chemical characterization and antibacterial activity. Colloids Surf., A. 2020;585:124141. doi: 10.1016/J.COLSURFA.2019.124141. DOI

Rezazadeh N. H. Buazar F. Matroodi S. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles. Sci. Rep. 2020;10(1):19615. doi: 10.1038/s41598-020-76726-7. PubMed DOI PMC

Mousavi-Khattat M. Keyhanfar M. Razmjou A. A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles. Artif. Cells, Nanomed., Biotechnol. 2018;46:S1022–S1031. doi: 10.1080/21691401.2018.1527346. PubMed DOI

Ying S. et al. , Green synthesis of nanoparticles: current developments and limitations. Environ. Technol. Innovation. 2022;26:102336. doi: 10.1016/J.ETI.2022.102336. DOI

Kumar V. Singh D. K. Mohan S. Hasan S. H. Photo-induced biosynthesis of silver nanoparticles using aqueous extract of Erigeron bonariensis and its catalytic activity against Acridine Orange. J. Photochem. Photobiol., B. 2016;155:39–50. doi: 10.1016/j.jphotobiol.2015.12.011. PubMed DOI

Singh A. K. et al. , Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential. J. Photochem. Photobiol., B. 2017;166:202–211. doi: 10.1016/j.jphotobiol.2016.11.020. PubMed DOI

Akintelu S. A. Olugbeko S. C. Folorunso A. S. A review on synthesis, optimization, characterization and antibacterial application of gold nanoparticles synthesized from plants. Int. Nano Lett. 2020;10(4):237–248. doi: 10.1007/s40089-020-00317-7. DOI

Pradhan P. et al. , Saraca asoca (Ashoka) J. Chem. Pharm. Res. 2009;1(1):62–71.

Vignesh A. Selvakumar S. Vasanth K. Comparative LC-MS analysis of bioactive compounds, antioxidants and antibacterial activity from leaf and callus extracts of Saraca asoca. Phytomedicine Plus. 2022;2(1):100167. doi: 10.1016/J.PHYPLU.2021.100167. DOI

Zhou W. Liu Y.-L. Stallworth A. M. Ye C. Lenhart J. J. Effects of pH, Electrolyte, Humic Acid, and Light Exposure on the Long-Term Fate of Silver Nanoparticles. Environ. Sci. Technol. Nov. 2016;50(22):12214–12224. doi: 10.1021/acs.est.6b03237. PubMed DOI

Saha J. Mukherjee S. Gupta K. Gupta B. High-performance thin-layer chromatographic analysis of antioxidants present in different parts of Saraca asoca (Roxb.) de Wilde. J. Pharm. Res. 2013;7(9):798–803. doi: 10.1016/j.jopr.2013.10.004. DOI

Kumar V. Gundampati R. K. Singh D. K. Bano D. Jagannadham M. V. Hasan S. H. Photoinduced green synthesis of silver nanoparticles with highly effective antibacterial and hydrogen peroxide sensing properties. J. Photochem. Photobiol., B. 2016;162:374–385. doi: 10.1016/j.jphotobiol.2016.06.037. PubMed DOI

Srikar S. K. Giri D. D. Pal D. B. Mishra P. K. Upadhyay S. N. Light Induced Green Synthesis of Silver Nanoparticles Using Aqueous Extract of Prunus amygdalus. Green Sustainable Chem. 2016;06(01):26–33. doi: 10.4236/gsc.2016.61003. DOI

Li X. Lenhart J. J. Aggregation and dissolution of silver nanoparticles in natural surface water. Environ. Sci. Technol. 2012;46(10):5378–5386. doi: 10.1021/es204531y. PubMed DOI

Velgosová O. Mražíková A. Marcinčáková R. Influence of pH on green synthesis of Ag nanoparticles. Mater. Lett. 2016;180:336–339. doi: 10.1016/j.matlet.2016.04.045. DOI

Balakumaran M. D. Ramachandran R. Balashanmugam P. Mukeshkumar D. J. Kalaichelvan P. T. Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol. Res. 2016;182:8–20. doi: 10.1016/j.micres.2015.09.009. PubMed DOI

Beğiç N. Bener M. Apak R. Development of a green synthesized silver nanoparticle-based antioxidant capacity method using carob extract. J. Nanostruct. Chem. 2021;11(3):381–394. doi: 10.1007/s40097-020-00374-6. DOI

Balakumaran M. D. Ramachandran R. Kalaichelvan P. T. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol. Res. 2015;178:9–17. doi: 10.1016/j.micres.2015.05.009. PubMed DOI

Dubey S. P. Lahtinen M. Sillanpää M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 2010;45(7):1065–1071. doi: 10.1016/j.procbio.2010.03.024. DOI

El-Sherbiny I. M. El-Shibiny A. Salih E. Photo-induced green synthesis and antimicrobial efficacy of poly(ε-caprolactone)/curcumin/grape leaf extract-silver hybrid nanoparticles. J. Photochem. Photobiol., B. 2016;160:355–363. doi: 10.1016/j.jphotobiol.2016.04.029. PubMed DOI

Singh R. Wagh P. Wadhwani S. Gaidhani S. Kumbhar A. Bellare J. Chopade B. A. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomed. 2013;8(1):4277–4290. doi: 10.2147/IJN.S48913. PubMed DOI PMC

Agnihotri S. Mukherji S. Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4(8):3974–3983. doi: 10.1039/C3RA44507K. DOI

Balashanmugam P. Kalaichelvan P. T. Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. aqueous extract, and coated on cotton cloth for effective antibacterial activity. Int. J. Nanomed. 2015;10(Supplement 1):87–97. doi: 10.2147/IJN.S79984. PubMed DOI PMC

Gupta N. Kushwaha A. K. Chattopadhyaya M. C. Adsorption studies of cationic dyes onto Ashoka (Saraca asoca) leaf powder. J. Taiwan Inst. Chem. Eng. 2012;43(4):604–613. doi: 10.1016/j.jtice.2012.01.008. DOI

Philip D. Honey mediated green synthesis of silver nanoparticles. Spectrochim. Acta, Part A. 2010;75(3):1078–1081. doi: 10.1016/j.saa.2009.12.058. PubMed DOI

Prathna T. C. Chandrasekaran N. Raichur A. M. Mukherjee A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf., B. 2011;82(1):152–159. doi: 10.1016/j.colsurfb.2010.08.036. PubMed DOI

Kaweeteerawat C. Na Ubol P. Sangmuang S. Aueviriyavit S. Maniratanachote R. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J. Toxicol. Environ. Health, Part A. 2017;80(23–24):1276–1289. doi: 10.1080/15287394.2017.1376727. PubMed DOI

Pazos-Ortiz E. Roque-Ruiz J. H. Hinojos-Márquez E. A. López-Esparza J. Donohué-Cornejo A. Cuevas-González J. C. Espinosa-Cristóbal L. F. Reyes-López S. Y. Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria. J. Nanomater. 2017:4752314. doi: 10.1155/2017/4752314. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...