Hybrid adaptive ant lion optimization with traditional controllers for driving and controlling switched reluctance motors to enhance performance

. 2025 Apr 15 ; 15 (1) : 12898. [epub] 20250415

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40234547

Grantová podpora
CZ.10.03.01/00/22_003/0000048 European Union
CZ.10.03.01/00/22_003/0000048 European Union
CZ.10.03.01/00/22_003/0000048 European Union
TN02000025 National Centre for Energy II
TN02000025 National Centre for Energy II
TN02000025 National Centre for Energy II
101139527 ExPEDite (European Union's Horizon Mission Programme)
101139527 ExPEDite (European Union's Horizon Mission Programme)
101139527 ExPEDite (European Union's Horizon Mission Programme)

Odkazy

PubMed 40234547
PubMed Central PMC12000315
DOI 10.1038/s41598-025-97070-8
PII: 10.1038/s41598-025-97070-8
Knihovny.cz E-zdroje

Switched reluctance motors (SRMs) are favored in industrial applications for their durability, efficiency, and cost-effectiveness, yet face challenges such as torque ripple and nonlinear magnetic behavior that limit their precision in control tasks. To address these issues, this work introduces a novel hybrid adaptive ant lion optimization (HAALO) algorithm, combined with PI and FOPID controllers, to improve SRM performance. The HAALO algorithm enhances traditional ant lion optimization by integrating adaptive mutation and elite preservation techniques for dynamic real-time control, optimizing both torque ripple and speed regulation. Simulation results demonstrate the superiority of the HAALO-optimized controllers over conventional methods, showing faster convergence and enhanced control accuracy. This study provides a new hybrid optimization method that significantly advances SRM control, offering efficient solutions for high-performance applications.

Zobrazit více v PubMed

Fang, G. et al. Advanced control of switched reluctance motors (SRMs): A review on current regulation, torque control and vibration suppression. IEEE Open J. Ind. Electron. Soc.2, 280–301 (2021).

Abdel-Aziz, A., Elgenedy, M. & Williams, B. Review of switched reluctance motor converters and torque ripple minimisation techniques for electric vehicle applications. Energies17(13), 3263 (2024).

Husain, I. Minimization of torque ripple in SRM drives. IEEE Trans. Ind. Electron.49(1), 28–39 (2002).

Gan, C. et al. A review on machine topologies and control techniques for low-noise switched reluctance motors in electric vehicle applications. IEEE Access6, 31430–31443 (2018).

Borase, R. P., Maghade, D., Sondkar, S. & Pawar, S. A review of PID control, tuning methods and applications. Int. J. Dyn. Control9, 818–827 (2021).

Kotb, H., Yakout, A. H., Attia, M. A., Turky, R. A. & AboRas, K. M. Speed control and torque ripple minimization of SRM using local unimodal sampling and spotted hyena algorithms based cascaded PID controller. Ain Shams Eng. J.13(4), 101719 (2022).

Senthil Murugan, L. & Maruthupandi, P. Sensorless speed control of 6/4-pole switched reluctance motor with ANFIS and fuzzy-PID-based hybrid observer. Electr. Eng.102, 831–844 (2020).

Kumar, C. V., Ram, A. R. & Rao, G. M. Design and development of remora optimization based controller for speed management in three-phase brushless DC motor. NeuroQuantology20(16), 1901 (2022).

Ren, P., Zhu, J., Jing, Z., Guo, Z. & Xu, A. Minimization of torque ripple in switched reluctance motor based on MPC and TSF. IEEJ Trans. Electr. Electron. Eng.16(11), 1535–1543 (2021).

Masoudi, S., Mehrjerdi, H. & Ghorbani, A. Adaptive control strategy for velocity control of a linear switched reluctance motor. IET Electr. Power Appl.14(8), 1496–1503 (2020).

Alharkan, H. Torque ripple minimization of variable reluctance motor using reinforcement dual NNs learning architecture. Energies16(13), 4839 (2023).

Jabari, M. & Rad, A. Optimization of speed control and reduction of torque ripple in switched reluctance motors using metaheuristic algorithms based PID and FOPID controllers at the edge. Tsinghua Sci. Technol. (2024).

Kumar, M. N. & Chidanandappa, R. Particle swarm optimization technique for speed control and torque ripple minimization of switched reluctance motor using PID and FOPID controllers. Int. J. Inf. Technol.16(2), 1185–1201 (2024).

Al-Amyal, F., Számel, L. & Hamouda, M. An enhanced direct instantaneous torque control of switched reluctance motor drives using ant colony optimization. Ain Shams Eng. J.14(5), 101967 (2023).

Abualigah, L., Shehab, M., Alshinwan, M., Mirjalili, S. & Elaziz, M. A. Ant lion optimizer: A comprehensive survey of its variants and applications. Arch. Comput. Methods Eng.28, 1397–1416 (2021).

Aguilar-Mejía, O., Minor-Popocatl, H. & Tapia-Olvera, R. Comparison and ranking of metaheuristic techniques for optimization of PI controllers in a machine drive system. Appl. Sci.10(18), 6592 (2020).

da Cunha Reis, M. R. et al. Optimized techniques for driving and control of the switched reluctance motor to improve efficiency. Control Eng. Pract.90, 1–18 (2019).

Divandari, M., Rezaie, B. & Noei, A. R. Speed control of switched reluctance motor via fuzzy fast terminal sliding-mode control. Comput. Electr. Eng.80, 106472 (2019).

Gengaraj, M., Kalaivani, L. & Rajesh, R. Investigation on torque sharing function for torque ripple minimization of switched reluctance motor: A flower pollination algorithm based approach. IETE J. Res.69(6), 3678–3692 (2023).

Rajendran, A. & Karthik, B. Design and analysis of fuzzy and PI controllers for switched reluctance motor drive. Mater. Today Proc.37, 1608–1612 (2021).

Mostafa Jabari, M. A. N., Mohammad, Z., Sanjeevikumar, P. & Muyeen, S.M. Designing a FOPI(1+PIDn) multi-stage controller for super-fast speed control and torque ripple reduction in switched reluctance motors, inpress. IET Electron. Lett. (2025).

Costa, P. R. M., De Paula, M. V., Neto, P. J. D. S. & Barros, T. A. D. S. A novel LQI-based speed control of switched reluctance motors for high performance applications. IEEE Access (2025).

Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw.83, 80–98 (2015).

Hu, G., Guo, Y., Wei, G. & Abualigah, L. Genghis Khan shark optimizer: A novel nature-inspired algorithm for engineering optimization. Adv. Eng. Inform.58, 102210 (2023).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...