Mitigation of bacterial spot disease induced biotic stress in Capsicum annuum L. cultivars via antioxidant enzymes and isoforms

. 2021 May 03 ; 11 (1) : 9445. [epub] 20210503

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33941790
Odkazy

PubMed 33941790
PubMed Central PMC8093210
DOI 10.1038/s41598-021-88797-1
PII: 10.1038/s41598-021-88797-1
Knihovny.cz E-zdroje

Bacterial spot, caused by a group of Xanthomonads (Xanthomonas spp.), is a devastating disease. It can adversely affect the Capsicum annum productivity. Scientists are working on the role of antioxidants to meet this challenge. However, research is lacking on the role of antioxidant enzymes and their isoforms in the non-compatible pathogen and host plant interaction and resistance mechanisms in capsicum varieties. The present study was conducted to ascertain the defensive role of antioxidant enzymes and their isoforms in chilli varieties Hybrid, Desi, Serrano, Padron, and Shehzadi against bacterial spot disease-induced Xanthomonas sp. The seedlings were inoculated with bacterial pathogen @ 107 CFU/mL, and samples were harvested after regular intervals of 24 h for 4 days followed by inoculation. Total plant proteins were extracted in phosphate buffer and quantified through Bradford assay. The crude protein extracts were analyzed through quantitative enzymatic assays in order to document activity levels of various antioxidant enzymes, including peroxidase (POD), Catalase (CAT), Ascorbate peroxidase (APX), and Superoxide dismutase (SOD). Moreover, the profiles appearance of these enzymes and their isoforms were determined using native polyacrylamide gel electrophoresis (PAGE) analysis. These enzymes exhibited maximum activity in Hybrid (HiR) cultivar followed by Desi (R), Serrano (S), Padron, and Shehzadi (HS). Both the number of isoforms and expression levels were higher in highly resistant cultivars compared to susceptible and highly susceptible cultivars. The induction of POD, CAT, and SOD occurs at the early stages of growth in resistant Capsicum cultivars. At the same time, APX seems to make the second line of antioxidant defense mechanisms. We found that modulating antioxidant enzymes and isoforms activity at the seedling stage was an important mechanism for mitigating plant growth inhibition in the resistant ones.

Zobrazit více v PubMed

Kraft KH, et al. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, Mexico. Proc. Natl. Acad. Sci. U.S.A. 2014;111:6165–6170. doi: 10.1073/pnas.1308933111. PubMed DOI PMC

Ismail F, Anjum MR, Mamon AN, Kazi TG. Trace metal contents of vegetables and fruits of Hyderabad retail market. Pak. J. Nutr. 2011;10:365–372. doi: 10.3923/pjn.2011.365.372. DOI

Tripathi S, Mishra HN. Nutritional changes in powdered red pepper upon in vitro infection of Aspergillus flavus. Braz. J. Microbiol. 2009;40:139–144. doi: 10.1590/S1517-83822009000100024. PubMed DOI PMC

Danish S, et al. Effect of foliar application of Fe and banana peel waste biochar on growth, chlorophyll content and accessory pigments synthesis in spinach under chromium (IV) toxicity. Open Agric. 2019;4:381–390. doi: 10.1515/opag-2019-0034. DOI

Zafar-ul-Hye M, et al. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci. Rep. 2020;10:12159. doi: 10.1038/s41598-020-69183-9. PubMed DOI PMC

Danish S, Zafar-Ul-Hye M, Hussain S, Riaz M, Qayyum MF. Mitigation of drought stress in maize through inoculation with drought tolerant ACC deaminase containing PGPR under axenic conditions. Pak. J. Bot. 2020;52:49–60. doi: 10.30848/PJB2020-1(7). DOI

Danish S, et al. Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol. Environ. Saf. 2019;185:109706. doi: 10.1016/j.ecoenv.2019.109706. PubMed DOI

Danish S, et al. Drought stress alleviation by ACC deaminase producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without timber waste biochar in maize. Sustainability. 2020;12:6286. doi: 10.3390/su12156286. DOI

Zafar-Ul-hye M, et al. Alleviation of cadmium adverse effects by improving nutrients uptake in bitter gourd through cadmium tolerant rhizobacteria. Environ. MDPI. 2020;7:54.

Danish S, Younis U, Nasreen S, Akhtar N, Iqbal MT. Biochar consequences on cations and anions of sandy soil. J. Biodivers. Environ. Sci. 2015;6:121–131.

Babur E. Effects of parent material on soil microbial biomass carbon and basal respiration within young afforested areas. Scand. J. For. Res. 2019;34:94–101. doi: 10.1080/02827581.2018.1561936. DOI

Gedik O, Uslu ÖS. Effects of Fennel and Cumin Extracts on Flax Seed Germination Parameters and Mitotic Activity in the Root Tip Cells. BEU J. Sci. 2021;10:197–206.

Uslu, O. S., Erol, A., Gedik, O., Kaya, A. R. & Akbay, F. Effects of Ozoned Irrigation Water and Temperature on Germination and Seedling Development of Hungarian Vetch (Vicia pannonica Crantz.) Seed. KSU J. Agric. Nat. 24, 141–145 (2021).

Ara N, et al. Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit species (‘Cucurbita maxima’ and ‘Cucurbita moschata’) and their interspecific inbred line ‘Maxchata’. Int. J. Mol. Sci. 2013;14:24008–24028. doi: 10.3390/ijms141224008. PubMed DOI PMC

Laz B, Babur E, Akpnar DM, Avgn SS. Determination of biotic and abiotic plant diseases in Green Belt Afforestation of Kahramanmaras-Elmalar. Kahramanmaras-Elmalar yesil kusak ek-3 plantasyon sahasnda gorulen biyotik ve abiyotik zararllarn tespiti. 2018;21:926–935.

Uslu OS, Babur E, Alma MH, Solaiman ZM. Walnut shell biochar increases seed germination and early growth of seedlings of fodder crops. Agriculture. 2020;10:427. doi: 10.3390/agriculture10100427. DOI

Chandrashekar S, Umesha S. induction of antioxidant enzymes associated with bacterial spot pathogenesis in tomato. Int. J. Food Agric. Vet. Sci. 2012;2:22–34.

Kebede M, et al. Molecular characterization of Xanthomonas strains responsible for bacterial spot of tomato in Ethiopia. Eur. J. Plant Pathol. 2014;140:677–688. doi: 10.1007/s10658-014-0497-3. DOI

Kim J-H, Kang W-S, Yun S-C. Development of a model to predict the primary infection date of bacterial spot (Xanthomonas campestris pv. vesicatoria) on hot pepper. Plant Pathol. J. 2014;30:125–135. doi: 10.5423/PPJ.OA.09.2013.0090. PubMed DOI PMC

Osdaghi E, Taghavi SM, Hamzehzarghani H, Lamichhane JR. Occurrence and characterization of the bacterial spot pathogen Xanthomonas euvesicatoria on pepper in Iran. J. Phytopathol. 2016;164:722–734. doi: 10.1111/jph.12493. DOI

Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI

Proietti S, et al. Xanthomonas campestris lipooligosaccharides trigger innate immunity and oxidative burst in Arabidopsis. Plant Physiol. Biochem. 2014;85:51–62. doi: 10.1016/j.plaphy.2014.10.011. PubMed DOI

Ramzan M, et al. Exogenous glutathione revealed protection to bacterial spot disease: Modulation of photosystem II and H2O2 scavenging antioxidant enzyme system in Capsicum annum L. J. King Saud Univ. Sci. 2020 doi: 10.1016/j.jksus.2020.10.020. DOI

Hashmi S, Younis U, Danish S, Munir TM. Pongamia pinnata L. leaves biochar increased growth and pigments syntheses in Pisum sativum L. exposed to nutritional stress. Agric. 2019;9:153.

Abbas M, et al. Gibberellic acid induced changes on growth, yield, superoxide dismutase, catalase and peroxidase in fruits of bitter gourd (Momordica charantia L.) Horticulturae. 2020;6:72. doi: 10.3390/horticulturae6040072. DOI

Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014;2:53. doi: 10.3389/fenvs.2014.00053. DOI

Kavitha R, Umesha S. Regulation of defense-related enzymes associated with bacterial spot resistance in Tomato. Phytoparasitica. 2008;36:144–159. doi: 10.1007/BF02981327. DOI

Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 2002;33:337–349. doi: 10.1016/S0891-5849(02)00905-X. PubMed DOI

Kużniak E, Skłodowska M. Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta. 2005;222:192–200. doi: 10.1007/s00425-005-1514-8. PubMed DOI

Kwak Y-S, et al. Different oxidative burst patterns occur during host and nonhost resistance responses triggered by Xanthomonas campestris in pepper. J. Plant Biotechnol. 2009;36:244–254. doi: 10.5010/JPB.2009.36.3.244. DOI

Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 2018;54:287–293. doi: 10.1016/j.ajme.2017.09.001. DOI

Grant M, et al. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 2000;23:441–450. doi: 10.1046/j.1365-313x.2000.00804.x. PubMed DOI

Xie J-H, et al. Induction of defense-related enzymes in patchouli inoculated with virulent Ralstonia solanacearum. Electron. J. Biotechnol. 2017;27:63–69. doi: 10.1016/j.ejbt.2017.03.007. DOI

Naveen J, Hariprasad P, Nayaka SC, Niranjana SR. Cerebroside mediated elicitation of defense response in chilli (Capsicum annuum L.) against Colletotrichum capsici infection. J. Plant Interact. 2013;8:65–73. doi: 10.1080/17429145.2012.679704. DOI

Avinash P, Umesha S. Identification and genetic diversity of bacterial wilt pathogen in brinjal. Arch. Phytopathol. Plant Prot. 2014;47:398–406. doi: 10.1080/03235408.2013.811017. DOI

Debona D, Rodrigues FÁ, Rios JA, Nascimento KJT. Biochemical changes in the leaves of wheat plants infected by Pyricularia oryzae. Phytopathology. 2012;102:1121–1129. doi: 10.1094/PHYTO-06-12-0125-R. PubMed DOI

Chai TT, He H, Xie JH, Xu R, Yang YX. Analysis on defense-related enzyme isozymes in Pogostemon cablin induced by Ralstonia solanacearum. Chin. Tradit. Herb. Drugs. 2012;43:1170–1173.

Lobna H, Aymen EM, Hajer R, Naima M-B, Najet H-R. Biochemical and plant nutrient alterations induced by Meloidogyne javanica and Fusarium oxysporum f. sp. radicis lycopersici co-infection on tomato cultivars with differing level of resistance to M. javanica. Eur. J. Plant Pathol. 2016;148:463–472. doi: 10.1007/s10658-016-1104-6. DOI

Rojas-Beltran JA, Dejaeghere F, Abd Alla Kotb M, Du Jardin P. Expression and activity of antioxidant enzymes during potato tuber dormancy. Potato Res. 2000;43:383–393. doi: 10.1007/BF02360542. DOI

García-Limones C, Hervás A, Navas-Cortés JA, Jiménez-Díaz RM, Tena M. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp.ciceris. Physiol. Mol. Plant Pathol. 2002;61:325–337. doi: 10.1006/pmpp.2003.0445. DOI

Vuleta A, Manitašević Jovanović S, Tucić B. Adaptive flexibility of enzymatic antioxidants SOD, APX and CAT to high light stress: The clonal perennial monocot Iris pumila as a study case. Plant Physiol. Biochem. 2016;100:166–173. doi: 10.1016/j.plaphy.2016.01.011. PubMed DOI

Bouyouces GJ. Hydrometer method improved for making particle size analysis of soil. Agron. J. 1962;53:464–465. doi: 10.2134/agronj1962.00021962005400050028x. DOI

Ahmad I, et al. Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ. Sci. Pollut. Res. 2014;21:11054–11065. doi: 10.1007/s11356-014-3010-9. PubMed DOI

Diao M, et al. Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J. Plant Growth Regul. 2014;33:671–682. doi: 10.1007/s00344-014-9416-2. DOI

Chance B, Maehly AC. Assay of catalases and peroxidases. Methods Enzymol. 1955;2:764–775. doi: 10.1016/S0076-6879(55)02300-8. PubMed DOI

Giannopolitis CN, Ries SK. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977;59:309–314. doi: 10.1104/pp.59.2.309. PubMed DOI PMC

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Davis BJ. Disc electrophoresis—II method and application to human serum proteins. Ann. N. Y. Acad. Sci. 2006;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. PubMed DOI

Abeles FB, Biles CL. Characterization of peroxidases in lignifying peach fruit endocarp. Plant Physiol. 1991;95:269–273. doi: 10.1104/pp.95.1.269. PubMed DOI PMC

Yang J-Q, Li S, Domann FE, Buettner GR, Oberley LW. Superoxide generation in v-Ha-ras-transduced human keratinocyte HaCaT cells. Mol. Carcinog. 1999;26:180–188. doi: 10.1002/(SICI)1098-2744(199911)26:3<180::AID-MC7>3.0.CO;2-4. PubMed DOI

Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971;44:276–287. doi: 10.1016/0003-2697(71)90370-8. PubMed DOI

Mittler R, Zilinskas BA. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal. Biochem. 1993;212:540–546. doi: 10.1006/abio.1993.1366. PubMed DOI

Steel RG, Torrie JH, Dickey DA. Principles and Procedures of Statistics: A Biometrical Approach. McGraw Hill Book International Co.; 1997.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...