Constitutive aneuploidy and genomic instability in the single-celled eukaryote Giardia intestinalis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27004936
PubMed Central
PMC4985590
DOI
10.1002/mbo3.351
Knihovny.cz E-zdroje
- Klíčová slova
- Aneuploidy, FISH, chromosome, giardia, karyotype, protist,
- MeSH
- aneuploidie * MeSH
- buněčné dělení fyziologie MeSH
- buněčné jádro metabolismus MeSH
- chromozomální nestabilita genetika MeSH
- genetická variace genetika MeSH
- genom protozoální genetika MeSH
- Giardia lamblia genetika izolace a purifikace MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp MeSH
- kontrolní body buněčného cyklu genetika MeSH
- lidé MeSH
- proliferace buněk genetika MeSH
- segregace chromozomů genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Giardia intestinalis is an important single-celled human pathogen. Interestingly, this organism has two equal-sized transcriptionally active nuclei, each considered diploid. By evaluating condensed chromosome numbers and visualizing homologous chromosomes by fluorescent in situ hybridization, we determined that the Giardia cells are constitutively aneuploid. We observed karyotype inter-and intra-population heterogeneity in eight cell lines from two clinical isolates, suggesting constant karyotype evolution during in vitro cultivation. High levels of chromosomal instability and frequent mitotic missegregations observed in four cell lines correlated with a proliferative disadvantage and growth retardation. Other cell lines, although derived from the same clinical isolate, revealed a stable yet aneuploid karyotype. We suggest that both chromatid missegregations and structural rearrangements contribute to shaping the Giardia genome, leading to whole-chromosome aneuploidy, unequal gene distribution, and a genomic divergence of the two nuclei within one cell. Aneuploidy in Giardia is further propagated without p53-mediated cell cycle arrest and might have been a key mechanism in generating the genetic diversity of this human pathogen.
Zobrazit více v PubMed
Adam, R. D. 1992. Chromosome‐size variation in Giardia lamblia: the role of rDNA repeats. Nucleic Acids Res. 20:3057–3061. PubMed PMC
Adam, R. D. , Dahlstrom E. W., Martens C. A., Bruno D. P., Barbian K. D., Ricklefs S. M., et al. 2013. Genome sequencing of Giardia lamblia genotypes A2 and B isolates (DH and GS) and comparative analysis with the genomes of genotypes A1 and E (WB and Pig). Genome Biol. Evol. 5:2498–2511. PubMed PMC
Agresti, A . 2002. Appendix B: Chi‐Squared Distribution Values Pp. 654–654 in Categorical Data Analysis. John Wiley & Sons, Inc., Hoboken, New Jersey.
Andreassen, P. R. , Lohez O. D., Lacroix F. B., and Margolis R. L.. 2001. Tetraploid state induces p53‐dependent arrest of nontransformed mammalian cells in G1. Mol. Biol. Cell 12:1315–1328. PubMed PMC
Aylon, Y. , and Oren M.. 2011. p53: guardian of ploidy. Mol. oncol. 5:315–323. PubMed PMC
Benere, E. , VAN Assche T., Cos P., and Maes L.. 2011. Variation in growth and drug susceptibility among Giardia duodenalis assemblages A, B and E in axenic in vitro culture and in the gerbil model. Parasitology 138:1354–1361. PubMed
Bernander, R. , Palm J. E., and Svard S. G.. 2001. Genome ploidy in different stages of the Giardia lamblia life cycle. Cell. Microbiol. 3:55–62. PubMed
Birkeland, S. R. , Preheim S. P., Davids B. J., Cipriano M. J., Palm D., Reiner D. S., et al. 2010. Transcriptome analyses of the Giardia lamblia life cycle. Mol. Biochem. Parasitol. 174:62–65. PubMed PMC
Chen, N. , Upcroft J. A., and Upcroft P.. 1994. Physical map of a 2 Mb chromosome of the intestinal protozoan parasite Giardia duodenalis. Chromosome Res. 2:307–313. PubMed
Conrad, M. , Zubacova Z., Dunn L. A., Upcroft J., Sullivan S. A., Tachezy J., and Carlton J. M.. 2011. Microsatellite polymorphism in the sexually transmitted human pathogen Trichomonas vaginalis indicates a genetically diverse parasite. Molecular and biochemical parasitology. 175:30–38. PubMed PMC
Dawson, S. C. , Sagolla M. S., and Cande W. Z.. 2007. The cenH3 histone variant defines centromeres in Giardia intestinalis. Chromosoma 116:175–184. PubMed
Diaz‐Martinez, L.A. , Beauchene N.A., Furniss K., Esponda P., Gimenez‐Abian J.F., and Clarke D. J.. 2010. Cohesin is needed for bipolar mitosis in human cells. Cell Cycle(Georgetown, Tex.) 9:1764–1773. PubMed
Donnelly, N. , and Storchova Z.. 2014. Dynamic karyotype, dynamic proteome: buffering the effects of aneuploidy. Biochim. Biophys. Acta 1843:473–481. PubMed
Downing, T. , Imamura H., Decuypere S., Clark T. G., Coombs G. H., Cotton J. A., et al. 2011. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 21:2143–2156. PubMed PMC
Emery, S. J. , van Sluyter S., and Haynes P. A.. 2014. Proteomic analysis in Giardia duodenalis yields insights into strain virulence and antigenic variation. Proteomics 14:2523–2534. PubMed
Emery, S.J. , Lacey E., and Haynes P.A.. 2015. Quantitative proteomic analysis of Giardia duodenalis assemblage A: A baseline for host, assemblage, and isolate variation. Proteomics 15:2281–2285. PubMed
Faghiri, Z. , and Widmer G.. 2011. A comparison of the Giardia lamblia trophozoite and cyst transcriptome using microarrays. BMC Microbiol. 11:91. PubMed PMC
Forche, A. 2014. Large‐Scale Chromosomal Changes and Associated Fitness Consequences in Pathogenic Fungi. Curr.Fungal Infect Rep. 8:163–170. PubMed PMC
Franzen, O. , Jerlstrom‐Hultqvist J., Castro E., Sherwood E., Ankarklev J., Reiner D. S., et al. 2009. Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog. 5:e1000560. PubMed PMC
Gluenz, E. , Sharma R., Carrington M., and Gull K.. 2008. Functional characterization of cohesin subunit SCC1 in Trypanosoma brucei and dissection of mutant phenotypes in two life cycle stages. Mol. Microbiol. 69:666–680. PubMed PMC
Gordon, D. J. , Resio B., and Pellman D.. 2012. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13:189–203. PubMed
Gourguechon, S. , Holt L. J., and Cande W. Z.. 2013. The Giardia cell cycle progresses independently of the anaphase‐promoting complex. J. Cell Sci. 126:2246–2255. PubMed PMC
Hou, G. , Le Blancq S. M., E Y., Zhu H., and Lee M.G.. 1995. Structure of a frequently rearranged rRNA‐encoding chromosome in Giardia lamblia. Nucleic Acids Res. 23:3310–3317. PubMed PMC
Jerlstrom‐Hultqvist, J. , Franzen O., Ankarklev J., Xu F., Nohynkova E., Andersson J. O., et al. 2010. Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genom. 11:543. PubMed PMC
Jirakova, K. , Kulda J., and Nohynkova E.. 2012. How nuclei of Giardia pass through cell differentiation: semi‐open mitosis followed by nuclear interconnection. Protist 163:465–479. PubMed
Lane, A. B. , and Clarke D. J.. 2012. Genome instability: does genetic diversity amplification drive tumorigenesis? BioEssays 34:963–972. PubMed
Le Blancq, S. M. , Korman S. H., and Van der Ploeg L. H.. 1991. Frequent rearrangements of rRNA‐encoding chromosomes in Giardia lamblia. Nucleic Acids Res. 19:4405–4412. PubMed PMC
Le Blancq, S. M. , Korman S. H., and Van der Ploeg L. H.. 1992. Spontaneous chromosome rearrangements in the protozoan Giardia lamblia: estimation of mutation rates. Nucleic Acids Res. 20:4539–4545. PubMed PMC
Maley, C. C. , Galipeau P. C., Finley J. C., Wongsurawat V. J., Li X., Sanchez C. A., et al. 2006. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38:468–473. PubMed
Manning, G. , Reiner D. S., Lauwaet T., Dacre M., Smith A., Zhai Y., et al. 2011. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biol. 12:R66. PubMed PMC
Margolis, R. L. , Lohez O. D., and Andreassen P. R.. 2003. G1 tetraploidy checkpoint and the suppression of tumorigenesis. J. Cell. Biochem. 88:673–683. PubMed
Mayrhofer, G. , Andrews R. H., Ey P. L., and Chilton N. B.. 1995. Division of Giardia isolates from humans into two genetically distinct assemblages by electrophoretic analysis of enzymes encoded at 27 loci and comparison with Giardia muris. Parasitology 111:11–17. PubMed
Minning, T. A. , Weatherly D. B., Flibotte S., and Tarleton R. L.. 2011. Widespread, focal copy number variations (CNV) and whole chromosome aneuploidies in Trypanosoma cruzi strains revealed by array comparative genomic hybridization. BMC Genom. 12:139. PubMed PMC
Monis, P. T. , Andrews R. H., Mayrhofer G., and Ey P. L.. 1999. Molecular systematics of the parasitic protozoan Giardia intestinalis. Mol. Biol. Evol. 16:1135–1144. PubMed
Monis, P. T. , Andrews R. H., Mayrhofer G., and Ey P. L.. 2003. Genetic diversity within the morphological species Giardia intestinalis and its relationship to host origin. Infect. Genet. Evol. 3:29–38. PubMed
Monis, P. T. , Caccio S. M., and Thompson R. C.. 2009. Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol. 25:93–100. PubMed
Morelle, C. , Sterkers Y., Crobu L., MBang‐Benet D.E., Kuk N., Portales P., et al. 2015. The nucleoporin Mlp2 is involved in chromosomal distribution during mitosis in trypanosomatids. Nucleic Acids Res. 43:4013–4027. PubMed PMC
Morrison, H. G. , McArthur A. G., Gillin F. D., Aley S. B., Adam R. D., Olsen G. J., et al. 2007. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317:1921–1926. PubMed
Morrow, C. A. , and Fraser J. A.. 2013. Ploidy variation as an adaptive mechanism in human pathogenic fungi. Semin. Cell Dev. Biol. 24:339–346. PubMed
Pavelka, N. , Rancati G., Zhu J., Bradford W. D., Saraf A., Florens L., et al. 2010. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468:321–325. PubMed PMC
Phillips, R. E. , Boreham P. F., and Shepherd R. W.. 1984. Cryopreservation of viable Giardia intestinalis trophozoites. Trans. R. Soc. Trop. Med. Hyg. 78:604–606. PubMed
Polakova, S. , Blume C., Zarate J. A., Mentel M., Jorck‐Ramberg D., Stenderup J., et al. 2009. Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. Proc. Natl Acad. Sci. USA 106:2688–2693. PubMed PMC
Prabhu, A. , Morrison H. G., Martinez C. R. 3rd, and Adam R. D.. 2007. Characterisation of the subtelomeric regions of Giardia lamblia genome isolate WBC6. Int. J. Parasitol. 37:503–513. PubMed
Rogers, M. B. , Hilley J. D., Dickens N. J., Wilkes J., Bates P. A., Depledge D. P., et al. 2011. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 21:2129–2142. PubMed PMC
Rutkowski, R. , Hofmann K., and Gartner A.. 2010. Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb. Perspect. Biol. 2:a001131. PubMed PMC
Sagolla, M. S. , Dawson S. C., Mancuso J. J., and Cande W. Z.. 2006. Three‐dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. J. Cell Sci. 119:4889–4900. PubMed
Selmecki, A. , Forche A., and Berman J.. 2006. Aneuploidy and isochromosome formation in drug‐resistant Candida albicans. Science 313:367–370. PubMed PMC
Shah, P. H. , MacFarlane R. C., Bhattacharya D., Matese J. C., Demeter J., Stroup S. E., et al. 2005. Comparative genomic hybridizations of Entamoeba strains reveal unique genetic fingerprints that correlate with virulence. Eukaryot. Cell 4:504–515. PubMed PMC
Sionov, E. , Lee H., Chang Y. C., and Kwon‐Chung K. J.. 2010. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 6:e1000848. PubMed PMC
Sipos, F. , Constantinovits M., and Muzes G.. 2014. Intratumoral functional heterogeneity and chemotherapy. World J. Gastroenterol. 20:2429–2432. PubMed PMC
Sterkers, Y. , Lachaud L., Crobu L., Bastien P., and Pages M.. 2011. FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cell. Microbiol. 13:274–283. PubMed
Sterkers, Y. , Lachaud L., Bourgeois N., Crobu L., Bastien P., and Pages M.. 2012. Novel insights into genome plasticity in Eukaryotes: mosaic aneuploidy in Leishmania. Mol. Microbiol. 86:15–23. PubMed
Storchova, Z. , and Pellman D.. 2004. From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 5:45–54. PubMed
Storchova, Z. , Breneman A., Cande J., Dunn J., Burbank K., O'Toole E., et al. 2006. Genome‐wide genetic analysis of polyploidy in yeast. Nature 443:541–547. PubMed
Thompson, S. L. , and Compton D. A.. 2011. Chromosome missegregation in human cells arises through specific types of kinetochore‐microtubule attachment errors. Proc. Natl Acad. Sci. USA 108:17974–17978. PubMed PMC
Tolba, M. E. , Kobayashi S., Imada M., Suzuki Y., and Sugano S.. 2013. Giardia lamblia transcriptome analysis using TSS‐Seq and RNA‐Seq. PLoS ONE 8:e76184. PubMed PMC
Torres, E. M. , Sokolsky T., Tucker C. M., Chan L. Y., Boselli M., Dunham M. J., et al. 2007. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317:916–924. PubMed
Torres, E. M. , Williams B. R., and Amon A.. 2008. Aneuploidy: cells losing their balance. Genetics 179:737–746. PubMed PMC
Tumova, P. , Hofstetrova K., Nohynkova E., Hovorka O., and Kral J.. 2007. Cytogenetic evidence for diversity of two nuclei within a single diplomonad cell of Giardia. Chromosoma 116:65–78. PubMed
Tumova, P. , Uzlikova M., Wanner G., and Nohynkova E.. 2015. Structural organization of very small chromosomes: study on a single‐celled evolutionary distant eukaryote Giardia intestinalis. Chromosoma 124:81–94. PubMed
Uzlikova, M. , and Nohynkova E.. 2014. The effect of metronidazole on the cell cycle and DNA in metronidazole‐susceptible and ‐resistant Giardia cell lines. Mol. Biochem. Parasitol. 198:75–81. PubMed
Vicente, J. J. , and Cande W. Z.. 2014. Mad2, Bub3, and Mps1 regulate chromosome segregation and mitotic synchrony in Giardia intestinalis, a binucleate protist lacking an anaphase‐promoting complex. Mol. Biol. Cell 25:2774–2787. PubMed PMC
Wang, H. , Nettleton D., and Ying K.. 2014. Copy number variation detection using next generation sequencing read counts. BMC Bioinformatics 15:109. PubMed PMC
Williams, B. R. , Prabhu V. R., Hunter K. E., Glazier C. M., Whittaker C. A., Housman D. E., et al. 2008. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322:703–709. PubMed PMC
Xu, F. , Jerlstrom‐Hultqvist J., and Andersson J. O.. 2012. Genome‐wide analyses of recombination suggest that Giardia intestinalis assemblages represent different species. Mol. Biol. Evol. 29:2895–2898. PubMed
Yu, L. Z. , Birky C. W. Jr, and Adam R. D.. 2002. The two nuclei of Giardia each have complete copies of the genome and are partitioned equationally at cytokinesis. Eukaryot. Cell 1:191–199. PubMed PMC
Efficient CRISPR/Cas9-mediated gene disruption in the tetraploid protist Giardia intestinalis