Structural organization of very small chromosomes: study on a single-celled evolutionary distant eukaryote Giardia intestinalis
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- adenosintrifosfatasy analýza MeSH
- buněčné jádro ultrastruktura MeSH
- chromozomy fyziologie ultrastruktura MeSH
- DNA vazebné proteiny analýza MeSH
- Giardia lamblia genetika ultrastruktura MeSH
- mitóza MeSH
- multiproteinové komplexy analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- condensin complexes MeSH Prohlížeč
- DNA vazebné proteiny MeSH
- multiproteinové komplexy MeSH
During mitotic prophase, chromosomes of the pathogenic unicellular eukaryote Giardia intestinalis condense in each of the cell's two nuclei. In this study, Giardia chromosomes were investigated using light microscopy, high-resolution field emission scanning electron microscopy, and in situ hybridization. For the first time, we describe the overall morphology, condensation stages, and mitotic segregation of these chromosomes. Despite the absence of several genes involved in the cohesion and condensation pathways in the Giardia genome, we observed chromatin organization similar to those found in eukaryotes, i.e., 10-nm nucleosomal fibrils, 30-nm fibrils coiled to chromomeres or in parallel arrangements, and closely aligned sister chromatids. DNA molecules of Giardia terminate with telomeric repeats that we visualized on each of the four chromatid endings of metaphase chromosomes. Giardia chromosomes lack primary and secondary constrictions, thus preventing their classification based on the position of the centromere. The anaphase poleward segregation of sister chromatids is atypical in orientation and tends to generate lagging chromatids between daughter nuclei. In the Giardia genome database, we identified two putative members of the kleisin family thought to be responsible for condensin ring establishment. Thus far, Giardia chromosomes (300 nm to 1.5 μm) are the smallest chromosomes that were analyzed at the ultrastructural level. This study complements the existing molecular and sequencing data on Giardia chromosomes with cytological and ultrastructural information.
Zobrazit více v PubMed
Curr Biol. 2011 May 24;21(10):889-96 PubMed
Chromosome Res. 2014 Jun;22(2):153-66 PubMed
Adv Appl Microbiol. 2003;53:243-70 PubMed
Methods Cell Biol. 2008;88:451-74 PubMed
J Cell Sci. 2006 Dec 1;119(Pt 23):4889-900 PubMed
Science. 2014 Jan 3;343(6166):77-80 PubMed
Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 PubMed
PLoS One. 2007 Aug 06;3(8):e2879 PubMed
Chromosome Res. 1994 Sep;2(5):411-5 PubMed
Cell Microbiol. 2001 Jan;3(1):55-62 PubMed
Cytogenet Genome Res. 2009;124(3-4):202-14 PubMed
Cytogenet Genome Res. 2009;124(3-4):239-50 PubMed
Exp Cell Res. 2012 Jul 15;318(12):1448-55 PubMed
Science. 2007 Sep 28;317(5846):1921-6 PubMed
Curr Biol. 2004 Sep 7;14(17):R693-6 PubMed
Philos Trans A Math Phys Eng Sci. 2014 Jan 27;372(2010):20130144 PubMed
J Cell Sci. 1990 Mar;95 ( Pt 3):353-60 PubMed
EMBO J. 2012 Apr 4;31(7):1644-53 PubMed
Int J Parasitol. 2011 Aug 15;41(10):1079-92 PubMed
FEBS Lett. 2013 Aug 2;587(15):2299-312 PubMed
J Struct Biol. 2000 Nov;132(2):147-61 PubMed
Chromosoma. 2011 Oct;120(5):455-68 PubMed
J Cell Sci. 2013 May 15;126(Pt 10):2246-55 PubMed
Nucleic Acids Res. 1992 Jun 25;20(12):3057-61 PubMed
J Plant Res. 2008 Jan;121(1):3-17 PubMed
Int J Parasitol. 2007 Apr;37(5):503-13 PubMed
Mol Biochem Parasitol. 1998 Nov 30;97(1-2):199-208 PubMed
Curr Biol. 2005 Jan 26;15(2):185-91 PubMed
Mol Biochem Parasitol. 2011 Dec;180(2):112-4 PubMed
Chromosoma. 2007 Apr;116(2):175-84 PubMed
Curr Opin Cell Biol. 2012 Jun;24(3):359-66 PubMed
J Cell Sci. 2012 May 15;125(Pt 10):2523-32 PubMed
Mol Cell. 2003 Jun;11(6):1685-92 PubMed
EMBO J. 2005 Jun 1;24(11):1921-30 PubMed
Nucleic Acids Res. 1988 May 25;16(10):4555-67 PubMed
Nucleic Acids Res. 1991 Sep 11;19(17):4780 PubMed
Mol Cell Biol. 1991 Jun;11(6):3326-30 PubMed
J Struct Biol. 2000 Feb;129(1):17-29 PubMed
Chromosoma. 2013 Oct;122(5):377-86 PubMed
Int J Syst Evol Microbiol. 2003 Nov;53(Pt 6):1759-77 PubMed
Genes Dev. 2012 Aug 1;26(15):1659-78 PubMed
Mol Biochem Parasitol. 2008 Sep;161(1):49-54 PubMed
J Hered. 2009 Sep-Oct;100(5):507-14 PubMed
Mol Biol Evol. 2000 Aug;17(8):1156-63 PubMed
Microbiol Rev. 1995 Dec;59(4):686-98 PubMed
Chromosoma. 2007 Feb;116(1):65-78 PubMed
J Mol Biol. 2008 Sep 12;381(4):816-25 PubMed
Plant J. 2001 Mar;25(6):699-707 PubMed
Int J Parasitol. 2011 Aug 1;41(9):925-33 PubMed
Proc Natl Acad Sci U S A. 1988 Jan;85(2):534-8 PubMed
Genome Biol Evol. 2013;5(3):468-83 PubMed
Mol Cell. 2003 Mar;11(3):571-5 PubMed
Nucleic Acids Res. 1995 Aug 25;23(16):3310-7 PubMed
Trans R Soc Trop Med Hyg. 1983;77(4):487-8 PubMed
PLoS Genet. 2006 Dec;2(12):e220 PubMed
Dev Cell. 2012 Aug 14;23(2):239-50 PubMed
Mol Biochem Parasitol. 2011 Apr;176(2):135-7 PubMed
Parasitol Res. 2011 Nov;109(5):1439-45 PubMed
Int J Parasitol. 2000 Apr 10;30(4):475-84 PubMed
Mol Biol Cell. 2007 Feb;18(2):557-68 PubMed
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19732-7 PubMed
Nucleic Acids Res. 1991 Apr 25;19(8):1905-8 PubMed
Int J Parasitol. 2008 Mar;38(3-4):353-69 PubMed
Trends Parasitol. 2010 Oct;26(10):484-91 PubMed
BMC Mol Biol. 2007 Apr 10;8:26 PubMed
Exp Cell Res. 1998 Oct 10;244(1):268-74 PubMed
Chromosome Res. 1995 Sep;3(6):368-74 PubMed
BMC Evol Biol. 2011 Sep 23;11:265 PubMed
Am J Med Genet A. 2006 Feb 15;140(4):358-67 PubMed
Protist. 2012 May;163(3):465-79 PubMed
Int J Parasitol. 2000 Apr 10;30(4):553-65 PubMed
Eukaryot Cell. 2005 Feb;4(2):484-6 PubMed
Exp Cell Res. 2012 Jul 15;318(12):1435-41 PubMed
J Parasitol. 1957 Aug;43(4):488-90 PubMed