Fluorescence in situ hybridization (FISH) mapping of single copy genes on Trichomonas vaginalis chromosomes
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21195113
DOI
10.1016/j.molbiopara.2010.12.011
PII: S0166-6851(10)00327-0
Knihovny.cz E-zdroje
- MeSH
- antigeny protozoální genetika MeSH
- chromozomy chemie genetika ultrastruktura MeSH
- DNA fingerprinting * metody MeSH
- fluorescence MeSH
- genetické markery MeSH
- genom MeSH
- genotyp MeSH
- genová dávka MeSH
- hybridizace in situ fluorescenční metody MeSH
- lidé MeSH
- mapování chromozomů metody MeSH
- senzitivita a specificita MeSH
- serin-C-palmitoyltransferasa genetika MeSH
- Trichomonas vaginalis chemie cytologie genetika MeSH
- trichomoniáza genetika parazitologie MeSH
- tryptofanasa genetika MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny protozoální MeSH
- genetické markery MeSH
- serin-C-palmitoyltransferasa MeSH
- tryptofanasa MeSH
The highly repetitive nature of the Trichomonas vaginalis genome and massive expansion of various gene families has caused difficulties in genome assembly and has hampered genome mapping. Here, we adapted fluorescence in situ hybridization (FISH) for T. vaginalis, which is sensitive enough to detect single copy genes on metaphase chromosomes. Sensitivity of conventional FISH, which did not allow single copy gene detection in T. vaginalis, was increased by means of tyramide signal amplification. Two selected single copy genes, coding for serine palmitoyltransferase and tryptophanase, were mapped to chromosome I and II, respectively, and thus could be used as chromosome markers. This established protocol provides an amenable tool for the physical mapping of the T. vaginalis genome and other essential applications, such as development of genetic markers for T. vaginalis genotyping.
Citace poskytuje Crossref.org
The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion