Molecular characterization of clinical isolates of human immunodeficiency virus resistant to the protease inhibitor darunavir
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19535439
PubMed Central
PMC2738195
DOI
10.1128/jvi.00451-09
PII: JVI.00451-09
Knihovny.cz E-zdroje
- MeSH
- darunavir MeSH
- genové produkty env - virus lidské imunodeficience metabolismus MeSH
- genové produkty gag - virus lidské imunodeficience metabolismus MeSH
- HIV infekce virologie MeSH
- HIV-1 účinky léků izolace a purifikace MeSH
- HIV-proteasa chemie genetika metabolismus MeSH
- inhibitory HIV-proteasy farmakologie MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- missense mutace MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- mutační analýza DNA MeSH
- polyproteiny metabolismus MeSH
- sekvence aminokyselin MeSH
- substituce aminokyselin MeSH
- sulfonamidy farmakologie MeSH
- terciární struktura proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- virová léková rezistence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- darunavir MeSH
- genové produkty env - virus lidské imunodeficience MeSH
- genové produkty gag - virus lidské imunodeficience MeSH
- HIV-proteasa MeSH
- inhibitory HIV-proteasy MeSH
- p16 protease, Human immunodeficiency virus 1 MeSH Prohlížeč
- polyproteiny MeSH
- sulfonamidy MeSH
Darunavir is the most recently approved human immunodeficiency virus (HIV) protease (PR) inhibitor (PI) and is active against many HIV type 1 PR variants resistant to earlier-generation PIs. Darunavir shows a high genetic barrier to resistance development, and virus strains with lower sensitivity to darunavir have a higher number of PI resistance-associated mutations than viruses resistant to other PIs. In this work, we have enzymologically and structurally characterized a number of highly mutated clinically derived PRs with high levels of phenotypic resistance to darunavir. With 18 to 21 amino acid residue changes, the PR variants studied in this work are the most highly mutated HIV PR species ever studied by means of enzyme kinetics and X-ray crystallography. The recombinant proteins showed major defects in substrate binding, while the substrate turnover was less affected. Remarkably, the overall catalytic efficiency of the recombinant PRs (5% that of the wild-type enzyme) is still sufficient to support polyprotein processing and particle maturation in the corresponding viruses. The X-ray structures of drug-resistant PRs complexed with darunavir suggest that the impaired inhibitor binding could be explained by change in the PR-inhibitor hydrogen bond pattern in the P2' binding pocket due to a substantial shift of the aminophenyl moiety of the inhibitor. Recombinant virus phenotypic characterization, enzyme kinetics, and X-ray structural analysis thus help to explain darunavir resistance development in HIV-positive patients.
Zobrazit více v PubMed
Bailey, S. 1994. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 50760-763. PubMed
Betts, M. J., and M. J. Sternberg. 1999. An analysis of conformational changes on protein-protein association: implications for predictive docking. Protein Eng. 12271-283. PubMed
Borman, A. M., S. Paulos, and F. Clavel. 1996. Resistance of human immunodeficiency virus type 1 to protease inhibitors: selection of resistance mutations in the presence and absence of the drug. J. Gen. Virol. 77419-426. PubMed
Brynda, J., P. Rezacova, M. Fabry, M. Horejsi, R. Stouracova, M. Soucek, M. Hradilek, J. Konvalinka, and J. Sedlacek. 2004. Inhibitor binding at the protein interface in crystals of a HIV-1 protease complex. Acta Crystallogr. Sect. D Biol. Crystallogr. 601943-1948. PubMed
Chellappan, S., G. S. Kiran Kumar Reddy, A. Ali, M. N. Nalam, S. G. Anjum, H. Cao, V. Kairys, M. X. Fernandes, M. D. Altman, B. Tidor, T. M. Rana, C. A. Schiffer, and M. K. Gilson. 2007. Design of mutation-resistant HIV protease inhibitors with the substrate envelope hypothesis. Chem. Biol. Drug Des. 69298-313. PubMed
Clotet, B., N. Bellos, J. M. Molina, D. Cooper, J. C. Goffard, A. Lazzarin, A. Wohrmann, C. Katlama, T. Wilkin, R. Haubrich, C. Cohen, C. Farthing, D. Jayaweera, M. Markowitz, P. Ruane, S. Spinosa-Guzman, and E. Lefebvre. 2007. Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: a pooled subgroup analysis of data from two randomised trials. Lancet 3691169-1178. PubMed
Dam, E., V. Obry, P. Jouvenne, J.-L. Meynard, F. Clavel, and E. Race. 2001. Definition of clinically relevant cut-offs for the interpretation of phenotypic data obtained using Phenoscript. Antivir. Ther. 6(Suppl. 1)123.
De Clercq, E. 2007. Anti-HIV drugs. Verh. K. Acad. Geneeskd. Belg. 6981-104. PubMed
De Meyer, S., H. Azijn, D. Surleraux, D. Jochmans, A. Tahri, R. Pauwels, P. Wigerinck, and M. P. de Bethune. 2005. TMC114, a novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates. Antimicrob. Agents Chemother. 492314-2321. PubMed PMC
De Meyer, S., I. Dierynck, E. Lathouwers, B. Van Baelen, T. Vangeneugden, S. Spinosa-Guzman, M. Peeters, G. Picchio, and M. P. de Bethune. 2008. Phenotypic and genotypic determinants of resistance to darunavir: analysis of data from treatment-experienced patients in POWER 1, 2, 3 and DUET-1 and 2. Antivir. Ther. 13A33.
Doyon, L., G. Croteau, D. Thibeault, F. Poulin, L. Pilote, and D. Lamarre. 1996. Second locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors. J. Virol. 703763-3769. PubMed PMC
Emsley, P., and K. Cowtan. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 602126-2132. PubMed
Evans, P. R. 1993. Data reduction. In Proceedings of CCP4 Study Weekend on Data Collection and Processing, p. 114-122, Daresbury Laboratory, Warrington, United Kingdom.
Grantz Saskova, K., M. Kozisek, M. Lepsik, J. Brynda, P. Rezacova, J. Vaclavikova, R. M. Kagan, L. Machala, and J. Konvalinka. 2008. Enzymatic and structural analysis of the I47A mutation contributing the reduced susceptibility to HIV protease inhibitor lopinavir. Protein Sci. 171555-1564. PubMed PMC
Gulnik, S. V., L. I. Suyorov, B. Lju, B. Yu, B. Anderson, H. Mitsuya, and J. W. Erickson. 1995. Kinetic characterization and cross-resistance patterns of HIV-1 protease mutants selected under drug pressure. Biochemistry 349282-9287. PubMed
Jacobsen, H., M. Hanggi, M. Ott, I. B. Duncan, S. Owen, M. Andreoni, S. Vella, and J. Mous. 1996. In vivo resistance to a human immunodeficiency virus type 1 proteinase inhibitor: mutations, kinetics, and frequencies. J. Infect. Dis. 1731379-1387. PubMed
Jones, S., and J. M. Thornton. 1996. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 9313-20. PubMed PMC
Kagan, R. M., P. K. Cheung, T. K. Huard, and M. A. Lewinski. 2006. Increasing prevalence of HIV-1 protease inhibitor-associated mutations correlates with long-term non-suppressive protease inhibitor treatment. Antivir. Res. 7142-52. PubMed
King, N. M., M. Prabu-Jeyabalan, E. A. Nalivaika, P. Wigerinck, M. P. de Bethune, and C. A. Schiffer. 2004. Structural and thermodynamic basis for the binding of TMC114, a next-generation human immunodeficiency virus type 1 protease inhibitor. J. Virol. 7812012-12021. PubMed PMC
Koh, T., T. Towata, A. K. Ghosh, and H. Mitsuya. 2007. Selection in vitro of HIV-1 variants highly resistant to darunavir using a mixture of HIV-1 isolates resistant to multiple PI, abstr 606. Abstr. 14th Conf. Retrovir. Opportunistic Infect., Los Angeles, CA.
Koh, Y., H. Nakata, K. Maeda, H. Ogata, G. Bilcer, T. Devasamudram, J. F. Kincaid, P. Boross, Y. F. Wang, Y. Tie, P. Volarath, L. Gaddis, R. W. Harrison, I. T. Weber, A. K. Ghosh, and H. Mitsuya. 2003. Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Antimicrob. Agents Chemother. 473123-3129. PubMed PMC
Kohl, N. E., E. A. Emini, W. A. Schleif, L. J. Davis, J. C. Heimbach, R. A. F. Dixon, E. M. Scolnick, and I. S. Sigal. 1988. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. USA 854686-4690. PubMed PMC
Kovalevsky, A. Y., Y. Tie, F. Liu, P. I. Boross, Y. F. Wang, S. Leshchenko, A. K. Ghosh, R. W. Harrison, and I. T. Weber. 2006. Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M. J. Med. Chem. 491379-1387. PubMed PMC
Kozisek, M., J. Bray, P. Rezacova, K. Saskova, J. Brynda, J. Pokorna, F. Mammano, L. Rulisek, and J. Konvalinka. 2007. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants. J. Mol. Biol. 3741005-1016. PubMed
Kozisek, M., K. G. Saskova, P. Rezacova, J. Brynda, N. M. van Maarseveen, D. De Jong, C. A. Boucher, R. M. Kagan, M. Nijhuis, and J. Konvalinka. 2008. Ninety-nine is not enough: molecular characterization of inhibitor-resistant human immunodeficiency virus type 1 protease mutants with insertions in the flap region. J. Virol. 825869-5878. PubMed PMC
Krissinel, E., and K. Henrick. 2005. Detection of protein assemblies in crystal. Computational Life Sci. 3695163-174.
Lambert-Niclot, S., P. Flandre, I. Malet, A. Canestri, C. Soulie, R. Tubiana, C. Brunet, M. Wirden, C. Katlama, V. Calvez, and A. G. Marcelin. 2008. Impact of gag mutations on selection of darunavir resistance mutations in HIV-1 protease. J. Antimicrob. Chemother. 62905-908. PubMed
Lefebvre, E., and C. A. Schiffer. 2008. Resilience to resistance of HIV-1 protease inhibitors: profile of darunavir. AIDS Rev. 10131-142. PubMed PMC
Leslie, A. G. 1999. Integration of macromolecular diffraction data. Acta Crystallogr. Sect. D Biol. Crystallogr. 551696-1702. PubMed
Liu, F., A. Y. Kovalevsky, Y. Tie, A. K. Ghosh, R. W. Harrison, and I. T. Weber. 2008. Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir. J. Mol. Biol. 381102-115. PubMed PMC
Lovell, S. C., I. W. Davis, W. B. Arendall III, P. I. de Bakker, J. M. Word, M. G. Prisant, J. S. Richardson, and D. C. Richardson. 2003. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50437-450. PubMed
Madruga, J. V., D. Berger, M. McMurchie, F. Suter, D. Banhegyi, K. Ruxrungtham, D. Norris, E. Lefebvre, M. P. de Bethune, F. Tomaka, M. De Pauw, T. Vangeneugden, and S. Spinosa-Guzman. 2007. Efficacy and safety of darunavir-ritonavir compared with that of lopinavir-ritonavir at 48 weeks in treatment-experienced, HIV-infected patients in TITAN: a randomised controlled phase III trial. Lancet 37049-58. PubMed
Mammano, F., C. Petit, and F. Clavel. 1998. Resistance-associated loss of viral fitness in human immunodeficiency virus type 1: phenotypic analysis of protease and gag coevolution in protease inhibitor-treated patients. J. Virol. 727632-7637. PubMed PMC
Minor, W., M. Cymborowski, Z. Otwinowski, and M. Chruszcz. 2006. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. Sect. D Biol. Crystallogr. 62859-866. PubMed
Molina, J. M., C. Cohen, C. Katlama, B. Grinsztejn, A. Timerman, R. J. Pedro, T. Vangeneugden, D. Miralles, S. D. Meyer, W. Parys, and E. Lefebvre. 2007. Safety and efficacy of darunavir (TMC114) with low-dose ritonavir in treatment-experienced patients: 24-week results of POWER 3. J. Acquir. Immune Defic. Syndr. 4624-31. PubMed
Murshudov, G. N., A. A. Vagin, and E. J. Dodson. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D Biol. Crystallogr. 53240-255. PubMed
Nalam, M. N. L., and C. A. Schiffer. 2008. New approaches to HIV protease inhibitor drug design II: testing the substrate envelope hypothesis to avoid drug resistance and discover robust inhibitors. Curr. Opin. HIV AIDS 3642-646. PubMed PMC
Nijhuis, M., N. M. van Maarseveen, S. Lastere, P. Schipper, E. Coakley, B. Glass, M. Rovenska, D. de Jong, C. Chappey, I. W. Goedegebuure, G. Heilek-Snyder, D. Dulude, N. Cammack, L. Brakier-Gingra, J. Konvalinka, N. Parkin, H.-G. Kräusslich, F. Brun-Vezinet, and C. A. Boucher. 2007. A novel substrate based HIV-1 protease inhibitor drug resistance mechanism. PLoS Med. 4152-163. PubMed PMC
Patick, A. K., M. Duran, Y. Cao, D. Shugarts, M. R. Keller, E. Mazabel, M. Knowles, S. Chapman, D. R. Kuritzkes, and M. Markowitz. 1998. Genotypic and phenotypic characterization of human immunodeficiency virus type 1 variants isolate from patients treated with the protease inhibitor nelfinavir. Antimicrob. Agents Chemother. 422637-2644. PubMed PMC
Picchio, G., T. Vangeneugden, B. Van Baelen, E. Lefebvre, D. Miralles, and M.-P. de Béthune. 2007. Prior utilization/resistance to amprenavir at screening has minimal impact on the 48-week response to darunavir/r in the POWER 1, 2 and 3 studies, abstr. 609. Abstr. 14th Conf. Retrovir. Opportunistic Infect., Los Angeles, CA.
Prejdova, J., M. Soucek, and J. Konvalinka. 2004. Determining and overcoming resistance to HIV protease inhibitors. Curr. Drug Targets Infect. Disord. 4137-152. PubMed
Race, E., E. Dam, V. Obry, S. Paulous, and F. Clavel. 1999. Analysis of HIV cross-resistance to protease inhibitors using a rapid single-cycle recombinant virus assay for patients failing on combination therapies. AIDS 132061-2068. PubMed
Rhee, S. Y., W. J. Fessel, A. R. Zolopa, L. Hurley, T. Liu, J. Taylor, D. P. Nguyen, S. Slome, D. Klein, M. Horberg, J. Flamm, S. Follansbee, J. M. Schapiro, and R. W. Shafer. 2005. HIV-1 protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance. J. Infect. Dis. 192456-465. PubMed PMC
Rinehart, A. R., G. Picchio, M.-P. de Béthune, L. B. Bacheler, T. Pattery, B. Wasikowski, and R. Falcon. 2007. Prevalence of darunavir resistance-associated mutations in samples received for routine clinical resistance testing, abstr. 44. Abstr. 5th Eur. HIV Drug Resist. Workshop, Cascais, Portugal, 28 to 30 March 2007.
Rose, R. B., C. S. Craik, and R. M. Stroud. 1998. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations. Biochemistry 372607-2621. PubMed
Schmit, J. C., L. Ruiz, B. Clotet, A. Raventos, J. Tor, J. Leonard, J. Desmyter, E. DeClercq, and A. M. Vandamme. 1996. Resistance-related mutations in the HIV-1 protease gene of patients treated for 1 year with the protease inhibitor ritonavir (ABT-538). AIDS 10995-999. PubMed
Sista, P., B. Wasikowski, P. Lecocq, T. Pattery, and L. Bacheler. 2008. The HIV-1 protease resistance mutation I50L is associated with resistance to atazanavir and susceptibility to other protease inhibitors in multiple mutational contexts. J. Clin. Virol. 42405-408. PubMed
Surleraux, D. L., H. A. de Kock, W. G. Verschueren, G. M. Pille, L. J. Maes, A. Peeters, S. Vendeville, S. De Meyer, H. Azijn, R. Pauwels, M. P. de Bethune, N. M. King, M. Prabu-Jeyabalan, C. A. Schiffer, and P. B. Wigerinck. 2005. Design of HIV-1 protease inhibitors active on multidrug-resistant virus. J. Med. Chem. 481965-1973. PubMed
Surleraux, D. L., A. Tahri, W. G. Verschueren, G. M. Pille, H. A. de Kock, T. H. Jonckers, A. Peeters, S. De Meyer, H. Azijn, R. Pauwels, M. P. de Bethune, N. M. King, M. Prabu-Jeyabalan, C. A. Schiffer, and P. B. Wigerinck. 2005. Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor. J. Med. Chem. 481813-1822. PubMed
Tie, Y. F., P. I. Boross, Y. F. Wang, L. Gaddis, A. K. Hussain, S. Leshchenko, A. K. Ghoshl, J. M. Louis, R. W. Harrison, and I. T. Weber. 2004. High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains. J. Mol. Biol. 338341-352. PubMed
Van Marck, H., I. Dierynck, G. Kraus, S. Hallenberger, T. Pattery, G. Muyldermans, H. Van Vlijmen, K. Hertogs, and M. P. de Bethune. 2007. Unravelling the complex resistance pathways of darunavir using bioinformatics resistance determination (BIRD). Antivir. Ther. 12S141.
Volarath, P., R. W. Harrison, and I. T. Weber. 2007. Structure based drug design for HIV protease: from molecular modeling to cheminformatics. Curr. Top. Med. Chem. 71030-1038. PubMed
Williams, J. W., and J. F. Morrison. 1979. The kinetics of reversible tight-binding inhibition. Methods Enzymol. 63437-467. PubMed
Winters, M. A., and T. C. Merigan. 2005. Insertions in the human immunodeficiency virus type 1 protease and reverse transcriptase genes: clinical impact and molecular mechanisms. Antimicrob. Agents Chemother. 492575-2582. PubMed PMC
Wlodawer, A., and J. Vondrasek. 1998. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct. 27249-284. PubMed
Wu, T. D., C. A. Schiffer, M. J. Gonzales, J. Taylor, R. Kantor, S. Chou, D. Israelski, A. R. Zolopa, W. J. Fessel, and R. W. Shafer. 2003. Mutation patterns and structural correlates in human immunodeficiency virus type 1 protease following different protease inhibitor treatments. J. Virol. 774836-4847. PubMed PMC
Yin, P. D., D. Das, and H. Mitsuya. 2006. Overcoming HIV drug resistance through rational drug design based on molecular, biochemical, and structural profiles of HIV resistance. Cell. Mol. Life Sci. 631706-1724. PubMed PMC
Yoshimura, K., R. Kato, M. F. Kavlick, A. Nguyen, V. Maroun, K. Maeda, K. A. Hussain, A. K. Ghosh, S. V. Gulnik, J. W. Erickson, and H. Mitsuya. 2002. A potent human immunodeficiency virus type 1 protease inhibitor, UIC-94003 (TMC-126), and selection of a novel (A28S) mutation in the protease active site. J. Virol. 761349-1358. PubMed PMC
Viral proteases as therapeutic targets
Precursors of Viral Proteases as Distinct Drug Targets