Molecular characterization of clinical isolates of human immunodeficiency virus resistant to the protease inhibitor darunavir

. 2009 Sep ; 83 (17) : 8810-8. [epub] 20090617

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19535439

Darunavir is the most recently approved human immunodeficiency virus (HIV) protease (PR) inhibitor (PI) and is active against many HIV type 1 PR variants resistant to earlier-generation PIs. Darunavir shows a high genetic barrier to resistance development, and virus strains with lower sensitivity to darunavir have a higher number of PI resistance-associated mutations than viruses resistant to other PIs. In this work, we have enzymologically and structurally characterized a number of highly mutated clinically derived PRs with high levels of phenotypic resistance to darunavir. With 18 to 21 amino acid residue changes, the PR variants studied in this work are the most highly mutated HIV PR species ever studied by means of enzyme kinetics and X-ray crystallography. The recombinant proteins showed major defects in substrate binding, while the substrate turnover was less affected. Remarkably, the overall catalytic efficiency of the recombinant PRs (5% that of the wild-type enzyme) is still sufficient to support polyprotein processing and particle maturation in the corresponding viruses. The X-ray structures of drug-resistant PRs complexed with darunavir suggest that the impaired inhibitor binding could be explained by change in the PR-inhibitor hydrogen bond pattern in the P2' binding pocket due to a substantial shift of the aminophenyl moiety of the inhibitor. Recombinant virus phenotypic characterization, enzyme kinetics, and X-ray structural analysis thus help to explain darunavir resistance development in HIV-positive patients.

Zobrazit více v PubMed

Bailey, S. 1994. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 50760-763. PubMed

Betts, M. J., and M. J. Sternberg. 1999. An analysis of conformational changes on protein-protein association: implications for predictive docking. Protein Eng. 12271-283. PubMed

Borman, A. M., S. Paulos, and F. Clavel. 1996. Resistance of human immunodeficiency virus type 1 to protease inhibitors: selection of resistance mutations in the presence and absence of the drug. J. Gen. Virol. 77419-426. PubMed

Brynda, J., P. Rezacova, M. Fabry, M. Horejsi, R. Stouracova, M. Soucek, M. Hradilek, J. Konvalinka, and J. Sedlacek. 2004. Inhibitor binding at the protein interface in crystals of a HIV-1 protease complex. Acta Crystallogr. Sect. D Biol. Crystallogr. 601943-1948. PubMed

Chellappan, S., G. S. Kiran Kumar Reddy, A. Ali, M. N. Nalam, S. G. Anjum, H. Cao, V. Kairys, M. X. Fernandes, M. D. Altman, B. Tidor, T. M. Rana, C. A. Schiffer, and M. K. Gilson. 2007. Design of mutation-resistant HIV protease inhibitors with the substrate envelope hypothesis. Chem. Biol. Drug Des. 69298-313. PubMed

Clotet, B., N. Bellos, J. M. Molina, D. Cooper, J. C. Goffard, A. Lazzarin, A. Wohrmann, C. Katlama, T. Wilkin, R. Haubrich, C. Cohen, C. Farthing, D. Jayaweera, M. Markowitz, P. Ruane, S. Spinosa-Guzman, and E. Lefebvre. 2007. Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: a pooled subgroup analysis of data from two randomised trials. Lancet 3691169-1178. PubMed

Dam, E., V. Obry, P. Jouvenne, J.-L. Meynard, F. Clavel, and E. Race. 2001. Definition of clinically relevant cut-offs for the interpretation of phenotypic data obtained using Phenoscript. Antivir. Ther. 6(Suppl. 1)123.

De Clercq, E. 2007. Anti-HIV drugs. Verh. K. Acad. Geneeskd. Belg. 6981-104. PubMed

De Meyer, S., H. Azijn, D. Surleraux, D. Jochmans, A. Tahri, R. Pauwels, P. Wigerinck, and M. P. de Bethune. 2005. TMC114, a novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates. Antimicrob. Agents Chemother. 492314-2321. PubMed PMC

De Meyer, S., I. Dierynck, E. Lathouwers, B. Van Baelen, T. Vangeneugden, S. Spinosa-Guzman, M. Peeters, G. Picchio, and M. P. de Bethune. 2008. Phenotypic and genotypic determinants of resistance to darunavir: analysis of data from treatment-experienced patients in POWER 1, 2, 3 and DUET-1 and 2. Antivir. Ther. 13A33.

Doyon, L., G. Croteau, D. Thibeault, F. Poulin, L. Pilote, and D. Lamarre. 1996. Second locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors. J. Virol. 703763-3769. PubMed PMC

Emsley, P., and K. Cowtan. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 602126-2132. PubMed

Evans, P. R. 1993. Data reduction. In Proceedings of CCP4 Study Weekend on Data Collection and Processing, p. 114-122, Daresbury Laboratory, Warrington, United Kingdom.

Grantz Saskova, K., M. Kozisek, M. Lepsik, J. Brynda, P. Rezacova, J. Vaclavikova, R. M. Kagan, L. Machala, and J. Konvalinka. 2008. Enzymatic and structural analysis of the I47A mutation contributing the reduced susceptibility to HIV protease inhibitor lopinavir. Protein Sci. 171555-1564. PubMed PMC

Gulnik, S. V., L. I. Suyorov, B. Lju, B. Yu, B. Anderson, H. Mitsuya, and J. W. Erickson. 1995. Kinetic characterization and cross-resistance patterns of HIV-1 protease mutants selected under drug pressure. Biochemistry 349282-9287. PubMed

Jacobsen, H., M. Hanggi, M. Ott, I. B. Duncan, S. Owen, M. Andreoni, S. Vella, and J. Mous. 1996. In vivo resistance to a human immunodeficiency virus type 1 proteinase inhibitor: mutations, kinetics, and frequencies. J. Infect. Dis. 1731379-1387. PubMed

Jones, S., and J. M. Thornton. 1996. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 9313-20. PubMed PMC

Kagan, R. M., P. K. Cheung, T. K. Huard, and M. A. Lewinski. 2006. Increasing prevalence of HIV-1 protease inhibitor-associated mutations correlates with long-term non-suppressive protease inhibitor treatment. Antivir. Res. 7142-52. PubMed

King, N. M., M. Prabu-Jeyabalan, E. A. Nalivaika, P. Wigerinck, M. P. de Bethune, and C. A. Schiffer. 2004. Structural and thermodynamic basis for the binding of TMC114, a next-generation human immunodeficiency virus type 1 protease inhibitor. J. Virol. 7812012-12021. PubMed PMC

Koh, T., T. Towata, A. K. Ghosh, and H. Mitsuya. 2007. Selection in vitro of HIV-1 variants highly resistant to darunavir using a mixture of HIV-1 isolates resistant to multiple PI, abstr 606. Abstr. 14th Conf. Retrovir. Opportunistic Infect., Los Angeles, CA.

Koh, Y., H. Nakata, K. Maeda, H. Ogata, G. Bilcer, T. Devasamudram, J. F. Kincaid, P. Boross, Y. F. Wang, Y. Tie, P. Volarath, L. Gaddis, R. W. Harrison, I. T. Weber, A. K. Ghosh, and H. Mitsuya. 2003. Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Antimicrob. Agents Chemother. 473123-3129. PubMed PMC

Kohl, N. E., E. A. Emini, W. A. Schleif, L. J. Davis, J. C. Heimbach, R. A. F. Dixon, E. M. Scolnick, and I. S. Sigal. 1988. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. USA 854686-4690. PubMed PMC

Kovalevsky, A. Y., Y. Tie, F. Liu, P. I. Boross, Y. F. Wang, S. Leshchenko, A. K. Ghosh, R. W. Harrison, and I. T. Weber. 2006. Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M. J. Med. Chem. 491379-1387. PubMed PMC

Kozisek, M., J. Bray, P. Rezacova, K. Saskova, J. Brynda, J. Pokorna, F. Mammano, L. Rulisek, and J. Konvalinka. 2007. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants. J. Mol. Biol. 3741005-1016. PubMed

Kozisek, M., K. G. Saskova, P. Rezacova, J. Brynda, N. M. van Maarseveen, D. De Jong, C. A. Boucher, R. M. Kagan, M. Nijhuis, and J. Konvalinka. 2008. Ninety-nine is not enough: molecular characterization of inhibitor-resistant human immunodeficiency virus type 1 protease mutants with insertions in the flap region. J. Virol. 825869-5878. PubMed PMC

Krissinel, E., and K. Henrick. 2005. Detection of protein assemblies in crystal. Computational Life Sci. 3695163-174.

Lambert-Niclot, S., P. Flandre, I. Malet, A. Canestri, C. Soulie, R. Tubiana, C. Brunet, M. Wirden, C. Katlama, V. Calvez, and A. G. Marcelin. 2008. Impact of gag mutations on selection of darunavir resistance mutations in HIV-1 protease. J. Antimicrob. Chemother. 62905-908. PubMed

Lefebvre, E., and C. A. Schiffer. 2008. Resilience to resistance of HIV-1 protease inhibitors: profile of darunavir. AIDS Rev. 10131-142. PubMed PMC

Leslie, A. G. 1999. Integration of macromolecular diffraction data. Acta Crystallogr. Sect. D Biol. Crystallogr. 551696-1702. PubMed

Liu, F., A. Y. Kovalevsky, Y. Tie, A. K. Ghosh, R. W. Harrison, and I. T. Weber. 2008. Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir. J. Mol. Biol. 381102-115. PubMed PMC

Lovell, S. C., I. W. Davis, W. B. Arendall III, P. I. de Bakker, J. M. Word, M. G. Prisant, J. S. Richardson, and D. C. Richardson. 2003. Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50437-450. PubMed

Madruga, J. V., D. Berger, M. McMurchie, F. Suter, D. Banhegyi, K. Ruxrungtham, D. Norris, E. Lefebvre, M. P. de Bethune, F. Tomaka, M. De Pauw, T. Vangeneugden, and S. Spinosa-Guzman. 2007. Efficacy and safety of darunavir-ritonavir compared with that of lopinavir-ritonavir at 48 weeks in treatment-experienced, HIV-infected patients in TITAN: a randomised controlled phase III trial. Lancet 37049-58. PubMed

Mammano, F., C. Petit, and F. Clavel. 1998. Resistance-associated loss of viral fitness in human immunodeficiency virus type 1: phenotypic analysis of protease and gag coevolution in protease inhibitor-treated patients. J. Virol. 727632-7637. PubMed PMC

Minor, W., M. Cymborowski, Z. Otwinowski, and M. Chruszcz. 2006. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. Sect. D Biol. Crystallogr. 62859-866. PubMed

Molina, J. M., C. Cohen, C. Katlama, B. Grinsztejn, A. Timerman, R. J. Pedro, T. Vangeneugden, D. Miralles, S. D. Meyer, W. Parys, and E. Lefebvre. 2007. Safety and efficacy of darunavir (TMC114) with low-dose ritonavir in treatment-experienced patients: 24-week results of POWER 3. J. Acquir. Immune Defic. Syndr. 4624-31. PubMed

Murshudov, G. N., A. A. Vagin, and E. J. Dodson. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D Biol. Crystallogr. 53240-255. PubMed

Nalam, M. N. L., and C. A. Schiffer. 2008. New approaches to HIV protease inhibitor drug design II: testing the substrate envelope hypothesis to avoid drug resistance and discover robust inhibitors. Curr. Opin. HIV AIDS 3642-646. PubMed PMC

Nijhuis, M., N. M. van Maarseveen, S. Lastere, P. Schipper, E. Coakley, B. Glass, M. Rovenska, D. de Jong, C. Chappey, I. W. Goedegebuure, G. Heilek-Snyder, D. Dulude, N. Cammack, L. Brakier-Gingra, J. Konvalinka, N. Parkin, H.-G. Kräusslich, F. Brun-Vezinet, and C. A. Boucher. 2007. A novel substrate based HIV-1 protease inhibitor drug resistance mechanism. PLoS Med. 4152-163. PubMed PMC

Patick, A. K., M. Duran, Y. Cao, D. Shugarts, M. R. Keller, E. Mazabel, M. Knowles, S. Chapman, D. R. Kuritzkes, and M. Markowitz. 1998. Genotypic and phenotypic characterization of human immunodeficiency virus type 1 variants isolate from patients treated with the protease inhibitor nelfinavir. Antimicrob. Agents Chemother. 422637-2644. PubMed PMC

Picchio, G., T. Vangeneugden, B. Van Baelen, E. Lefebvre, D. Miralles, and M.-P. de Béthune. 2007. Prior utilization/resistance to amprenavir at screening has minimal impact on the 48-week response to darunavir/r in the POWER 1, 2 and 3 studies, abstr. 609. Abstr. 14th Conf. Retrovir. Opportunistic Infect., Los Angeles, CA.

Prejdova, J., M. Soucek, and J. Konvalinka. 2004. Determining and overcoming resistance to HIV protease inhibitors. Curr. Drug Targets Infect. Disord. 4137-152. PubMed

Race, E., E. Dam, V. Obry, S. Paulous, and F. Clavel. 1999. Analysis of HIV cross-resistance to protease inhibitors using a rapid single-cycle recombinant virus assay for patients failing on combination therapies. AIDS 132061-2068. PubMed

Rhee, S. Y., W. J. Fessel, A. R. Zolopa, L. Hurley, T. Liu, J. Taylor, D. P. Nguyen, S. Slome, D. Klein, M. Horberg, J. Flamm, S. Follansbee, J. M. Schapiro, and R. W. Shafer. 2005. HIV-1 protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance. J. Infect. Dis. 192456-465. PubMed PMC

Rinehart, A. R., G. Picchio, M.-P. de Béthune, L. B. Bacheler, T. Pattery, B. Wasikowski, and R. Falcon. 2007. Prevalence of darunavir resistance-associated mutations in samples received for routine clinical resistance testing, abstr. 44. Abstr. 5th Eur. HIV Drug Resist. Workshop, Cascais, Portugal, 28 to 30 March 2007.

Rose, R. B., C. S. Craik, and R. M. Stroud. 1998. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations. Biochemistry 372607-2621. PubMed

Schmit, J. C., L. Ruiz, B. Clotet, A. Raventos, J. Tor, J. Leonard, J. Desmyter, E. DeClercq, and A. M. Vandamme. 1996. Resistance-related mutations in the HIV-1 protease gene of patients treated for 1 year with the protease inhibitor ritonavir (ABT-538). AIDS 10995-999. PubMed

Sista, P., B. Wasikowski, P. Lecocq, T. Pattery, and L. Bacheler. 2008. The HIV-1 protease resistance mutation I50L is associated with resistance to atazanavir and susceptibility to other protease inhibitors in multiple mutational contexts. J. Clin. Virol. 42405-408. PubMed

Surleraux, D. L., H. A. de Kock, W. G. Verschueren, G. M. Pille, L. J. Maes, A. Peeters, S. Vendeville, S. De Meyer, H. Azijn, R. Pauwels, M. P. de Bethune, N. M. King, M. Prabu-Jeyabalan, C. A. Schiffer, and P. B. Wigerinck. 2005. Design of HIV-1 protease inhibitors active on multidrug-resistant virus. J. Med. Chem. 481965-1973. PubMed

Surleraux, D. L., A. Tahri, W. G. Verschueren, G. M. Pille, H. A. de Kock, T. H. Jonckers, A. Peeters, S. De Meyer, H. Azijn, R. Pauwels, M. P. de Bethune, N. M. King, M. Prabu-Jeyabalan, C. A. Schiffer, and P. B. Wigerinck. 2005. Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor. J. Med. Chem. 481813-1822. PubMed

Tie, Y. F., P. I. Boross, Y. F. Wang, L. Gaddis, A. K. Hussain, S. Leshchenko, A. K. Ghoshl, J. M. Louis, R. W. Harrison, and I. T. Weber. 2004. High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains. J. Mol. Biol. 338341-352. PubMed

Van Marck, H., I. Dierynck, G. Kraus, S. Hallenberger, T. Pattery, G. Muyldermans, H. Van Vlijmen, K. Hertogs, and M. P. de Bethune. 2007. Unravelling the complex resistance pathways of darunavir using bioinformatics resistance determination (BIRD). Antivir. Ther. 12S141.

Volarath, P., R. W. Harrison, and I. T. Weber. 2007. Structure based drug design for HIV protease: from molecular modeling to cheminformatics. Curr. Top. Med. Chem. 71030-1038. PubMed

Williams, J. W., and J. F. Morrison. 1979. The kinetics of reversible tight-binding inhibition. Methods Enzymol. 63437-467. PubMed

Winters, M. A., and T. C. Merigan. 2005. Insertions in the human immunodeficiency virus type 1 protease and reverse transcriptase genes: clinical impact and molecular mechanisms. Antimicrob. Agents Chemother. 492575-2582. PubMed PMC

Wlodawer, A., and J. Vondrasek. 1998. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct. 27249-284. PubMed

Wu, T. D., C. A. Schiffer, M. J. Gonzales, J. Taylor, R. Kantor, S. Chou, D. Israelski, A. R. Zolopa, W. J. Fessel, and R. W. Shafer. 2003. Mutation patterns and structural correlates in human immunodeficiency virus type 1 protease following different protease inhibitor treatments. J. Virol. 774836-4847. PubMed PMC

Yin, P. D., D. Das, and H. Mitsuya. 2006. Overcoming HIV drug resistance through rational drug design based on molecular, biochemical, and structural profiles of HIV resistance. Cell. Mol. Life Sci. 631706-1724. PubMed PMC

Yoshimura, K., R. Kato, M. F. Kavlick, A. Nguyen, V. Maroun, K. Maeda, K. A. Hussain, A. K. Ghosh, S. V. Gulnik, J. W. Erickson, and H. Mitsuya. 2002. A potent human immunodeficiency virus type 1 protease inhibitor, UIC-94003 (TMC-126), and selection of a novel (A28S) mutation in the protease active site. J. Virol. 761349-1358. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Viral proteases as therapeutic targets

. 2022 Dec ; 88 () : 101159. [epub] 20221129

Precursors of Viral Proteases as Distinct Drug Targets

. 2021 Oct 02 ; 13 (10) : . [epub] 20211002

Mutations in HIV-1 gag and pol compensate for the loss of viral fitness caused by a highly mutated protease

. 2012 Aug ; 56 (8) : 4320-30. [epub] 20120529

Current and Novel Inhibitors of HIV Protease

. 2009 Dec ; 1 (3) : 1209-39. [epub] 20091211

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...