Inhibitor and substrate binding induced stability of HIV-1 protease against sequential dissociation and unfolding revealed by high pressure spectroscopy and kinetics

. 2015 ; 10 (3) : e0119099. [epub] 20150317

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25781460

High-pressure methods have become an interesting tool of investigation of structural stability of proteins. They are used to study protein unfolding, but dissociation of oligomeric proteins can be addressed this way, too. HIV-1 protease, although an interesting object of biophysical experiments, has not been studied at high pressure yet. In this study HIV-1 protease is investigated by high pressure (up to 600 MPa) fluorescence spectroscopy of either the inherent tryptophan residues or external 8-anilino-1-naphtalenesulfonic acid at 25°C. A fast concentration-dependent structural transition is detected that corresponds to the dimer-monomer equilibrium. This transition is followed by a slow concentration independent transition that can be assigned to the monomer unfolding. In the presence of a tight-binding inhibitor none of these transitions are observed, which confirms the stabilizing effect of inhibitor. High-pressure enzyme kinetics (up to 350 MPa) also reveals the stabilizing effect of substrate. Unfolding of the protease can thus proceed only from the monomeric state after dimer dissociation and is unfavourable at atmospheric pressure. Dimer-destabilizing effect of high pressure is caused by negative volume change of dimer dissociation of -32.5 mL/mol. It helps us to determine the atmospheric pressure dimerization constant of 0.92 μM. High-pressure methods thus enable the investigation of structural phenomena that are difficult or impossible to measure at atmospheric pressure.

Zobrazit více v PubMed

Wlodawer A, Miller M, Jaskolski M, Sathyanarayana BK, Baldwin E, Weber IT, et al. Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease. Science. 1989; 245: 616–621. PubMed

Turner BG, Summers MF (1999) Structural biology of HIV. J Mol Biol. 285(1): 1–32. PubMed

Pokorná J, Machala L, Řezáčová P, Konvalinka J. Current and Novel Inhibitors of HIV Protease. Viruses. 2009; 1: 1209–1239. 10.3390/v1031209 PubMed DOI PMC

Jordan SP, Zugay J, Darke PL, and Kuo LC. Activity and dimerization of human immunodeficiency virus protease as a function of solvent composition and enzyme concentration. J Biol Chem. 1992; 267: 20028–20032. PubMed

Pargellis CA, Morelock MM, Graham ET, Kinkade P, Pav S, Lubbe K, et al. Determination of kinetic rate constants for the binding of inhibitors to HIV-1 protease and for the association and dissociation of active homodimer. Biochemistry. 1994; 33: 12527–12534. PubMed

Darke PL, Jordan SP, Hall DL, Zugay JA, Shafer JA, Kuo LC Dissociation and association of the HIV-1 protease dimer subunits—equilibria and rates. Biochemistry. 1994; 33: 98–105. PubMed

Ingr M, Uhlikova T, Strisovsky K, Majerova E,Konvalinka J. Kinetics of the dimerization of retroviral proteases: The "fireman's grip" and dimerization. Protein Sci. 2003; 12: 2173–2182. PubMed PMC

Holzman TF, Kohlbrenner WE, Weigl D, Rittenhouse J, Kempf D, Erickson J. Inhibitor stabilization of Human-immunodeficiency-virus type-2 proteinase dimer formation. J Biol Chem. 1991; 266: 19217–19220. PubMed

Towler EM, Gulnik SV, Bhat TN, Xie D, Gustschina E, Sumpter TR, et al. Functional characterization of the protease of human endogenous retrovirus, K10: Can it complement HIV-1 protease? Biochemistry. 1998; 37: 17137–17144. PubMed

Stříšovský K., Tessmer U, Langner J, Konvalinka J, Kräusslich HG. Systematic mutational analysis of the active-site threonine of HIV-1 proteinase: Re-thinking the “fireman’s grip” hypothesis. Protein Sci. 2000; 9: 1631–1641. PubMed PMC

Prehoda KE, Mooberry ES, Markley JL. High pressure effects on protein structure In: Protein dynamics, function, and design, Springer US, Jardetzky O, Lefévre JF, Holbrook RE, NATO ADV Sci I A-Lif 1998; 301: 59–86.

Silva JL, Foguel D, Royer CA. Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem Sci. 2001; 26: 612–618. PubMed

Gross M, Jaenicke R. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem. 1994; 221: 617–630. PubMed

Marchal S, Torrent J, Masson P, Kornblatt JM, Tortora P, Fusi P, et al. The powerful high pressure tool for protein conformational studies. Braz J Med Biol Res. 2005; 38: 1175–1183. PubMed

Torrent J,Connelly JP, Coll MG, Ribo M, Lange R, Vilanova M. Pressure versus Heat-Induced Unfolding of Ribonuclease A: The Case of Hydrophobic Interactions within a Chain-Folding Initiation Site. Biochemistry. 1999; 38: 15952–15961. PubMed

Font J, Benito A, Lange R, Ribo M, Vilanova M. The contribution of the residues from the main hydrophobic core of ribonuclease A to its pressure-folding transition state. Protein Sci. 2006; 15: 1000–1009. PubMed PMC

Font J, Torrent J, Ribo M, Laurents DV, Balny C, Vilanova M, et al. Pressure-jump-induced kinetics reveals a hydration dependent folding/unfolding mechanism of ribonuclease A. Biophys J. 2006; 91: 2264–2274. PubMed PMC

El Moustaine D, Perrier V, Smeller L, Lange R, Torrent J. Full-length prion protein aggregates to amyloid fibrils and spherical particles by distinct pathways. FEBS J. 2008; 275: 2021–2031. 10.1111/j.1742-4658.2008.06356.x PubMed DOI

Girard E, Marchal S, Perez J, Finet S, Kahn R, Fourme R, et al. Structure-Function Perturbation and Dissociation of Tetrameric Urate Oxidase by High Hydrostatic Pressure. Biophys J. 2010; 98: 2365–2373. 10.1016/j.bpj.2010.01.058 PubMed DOI PMC

Kornblatt MJ, Lange R, Balny C. Use of hydrostatic pressure to produce 'native' monomers of yeast enolase. Eur J Biochem. 2004; 271: 3897–3904. PubMed

Ruan KC, Weber G. Dissociation of yeast hexokinase by hydrostatic-pressure. Biochemistry. 1988; 27: 3295–3301. PubMed

Deville-Bone D, Else AJ. Revisible high hydrostatic-pressure inactivation of phosphofructokinase from Escherichia-coli. Eur J Biochem. 1991; 200: 747–750. PubMed

Marchal S, Marabotti A, Staiano M, Varriale A, Domaschke T, Lange R, et al. Under Pressure That Splits a Family in Two. The Case of Lipocalin Family. PLOS ONE. 2012; 7: e50489 10.1371/journal.pone.0050489 PubMed DOI PMC

Cioni P, Gabellieri E, Marchal S, Lange R. Temperature and pressure effects on C112S azurin: Volume, expansivity, and flexibility changes. Proteins. 2014; 82: 1787–1798. 10.1002/prot.24532 PubMed DOI

Ferreira de Lima Neto D, Bonafe CFS, Arns CW. Influence of High Hydrostatic Pressure on Epitope Mapping of Tobacco Mosaic Virus Coat Protein. Viral Immunol. 2014; 27: 60–74. 10.1089/vim.2013.0088 PubMed DOI PMC

Fowler CB, O'Leary TJ, Mason JT. Improving the Proteomic Analysis of Archival Tissue by Using Pressure-Assisted Protein Extraction: A Mechanistic Approach. J Proteomics Bioinform. 2014; 7: 151–157. PubMed PMC

Ishima R, Torchia DA, Louis JM. Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor. J Biol Chem. 2007; 282: 17190–17199. PubMed

Louis JM, Ishima R, Aniana A, Sayer JM. Revealing the dimer dissociation and existence of a folded monomer of the mature HIV-2 protease. Protein Sci. 2009; 18: 2442–2453. 10.1002/pro.261 PubMed DOI PMC

Kožíšek M, Bray J, Řezáčová P, Šašková K, Brynda J, Pokorna J, et al. Molecular analysis of the HIV-1 resistance development: Enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIVprotease mutants. J Mol Biol 2007; 374: 1005–1016. PubMed

Kožíšek M, Šašková KG, Řezáčová P, Brynda J, van Maarseveen NM, De Jong D, et al. Ninety-nines not enough: Molecular characterization of inhibitor-resistant human immunodeficiency virus type 1 protease mutants with insertions in the flap region. J Virol. 2008; 82: 5869–5878. 10.1128/JVI.02325-07 PubMed DOI PMC

Ruan K, Tian S, Lange R, Balny C. Pressure Effects on Tryptophan and its Derivatives. Biochem. Biophys Res Commun. 2000; 269(3): 681–686. PubMed

Meher BR, Satish Kumar MV, Kausik Sen (2008) Pressure induced conformational dynamics of HIV-1 protease: A Molecular Dynamics simulation study. In ICIT 2008: Proceedings of the 11th international conference on information technology; Panda, B.S., Nayak, A., eds., 118–122.

Veverka V, Bauerova H, Zabransky A, Lang J, Ruml T, Pichova I, et al. (2003) Three-dimensional Structure of a Monomeric Form of a Retroviral Protease. J Mol Biol 333(4): 771–780. PubMed

Gasymov OK, Glasgow BJ (2007) ANS Fluorescence: Potential to augment the identification of the external binding sites of proteins. Biochim Biophys Acta 1774(3): 403–411. PubMed PMC

Iranfar H, Rajabi O, Salari R, Chamani J (2012) Probing the Interaction of Human Serum Albumin with Ciprofloxacin in the Presence of Silver Nanoparticles of Three Sizes: Multispectroscopic and ζ Potential Investigation. J. Phys. Chem. B 116(6), 1951–1964. 10.1021/jp210685q PubMed DOI

Schramm HJ, Boetzel J, Büttner J, Fritsche E, Göhring W, Jaeger E, et al.(1996) The inhibition of human immunodeficiency virus proteases by 'interface peptides'. Antiviral Res. 30(2–3): 155–170. PubMed

Uhlíková T, Konvalinka J, Pichová I, Souček M, Kräusslich HG, Vondrášek J (1996) A modular approach to HIV-1 proteinase inhibitor design. Biochem. Biophys. Res. Commun. 222(1): 38–43. PubMed

Xie D, Gulnik S, Gustchina E, Yu B., Shao W, Qoronfleh W, et al. Drug resistance mutations can effect dimer stability of HIV-1 protease at neutral pH. Protein Sci. 1999; 8: 1702–1707. PubMed PMC

Cheng YS, Yin FH, Foundling S, Blomstrom D, Kettner CA. Stability and activity of human immunodeficiency virus protease: Comparison of the natural dimer with a homologous, single-chain tethered dimer. Proc Natl Acad Sci USA 1999; 87: 9660–9664. PubMed PMC

Zhang ZY, Poorman RA, Maggiora LL, Heinrikson RL, Kézdy FJ. Dissociative inhibition of dimeric enzymes. Kinetic characterization of the inhibition of HIV-1 protease by its COOH-terminal tetrapeptide. J Biol Chem. 1991; 266: 15591–15594. PubMed

Kuzmic P. Kinetic assay for HIV proteinase subunit dissociation. Biochem Biophys Res Commun. 1993; 191: 998–1003. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Precursors of Viral Proteases as Distinct Drug Targets

. 2021 Oct 02 ; 13 (10) : . [epub] 20211002

Inhibition of the precursor and mature forms of HIV-1 protease as a tool for drug evaluation

. 2018 Jul 11 ; 8 (1) : 10438. [epub] 20180711

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...