Kinetics of the dimerization of retroviral proteases: the "fireman's grip" and dimerization

. 2003 Oct ; 12 (10) : 2173-82.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid14500875

All retroviral proteases belong to the family of aspartic proteases. They are active as homodimers, each unit contributing one catalytic aspartate to the active site dyad. An important feature of all aspartic proteases is a conserved complex scaffold of hydrogen bonds supporting the active site, called the "fireman's grip," which involves the hydroxyl groups of two threonine (serine) residues in the active site Asp-Thr(Ser)-Gly triplets. It was shown previously that the fireman's grip is indispensable for the dimer stability of HIV protease. The retroviral proteases harboring Ser in their active site triplet are less active and, under natural conditions, are expressed in higher enzyme/substrate ratio than those having Asp-Thr-Gly triplet. To analyze whether this observation can be attributed to the different influence of Thr or Ser on dimerization, we prepared two pairs of the wild-type and mutant proteases from HIV and myeloblastosis-associated virus harboring either Ser or Thr in their Asp-Thr(Ser)-Gly triplet. The equilibrium dimerization constants differed by an order of magnitude within the relevant pairs. The proteases with Thr in their active site triplets were found to be approximately 10 times more thermodynamically stable. The dimer association contributes to this difference more than does the dissociation. We propose that the fireman's grip might be important in the initial phases of dimer formation to help properly orientate the two subunits of a retroviral protease. The methyl group of threonine might contribute significantly to fixing such an intermediate conformation.

Zobrazit více v PubMed

Arad, G., Chorev, M., Shtorch, A., Goldblum, A., and Kotler, M. 1995. Point mutation in avian sarcoma leukaemia virus protease which increases its activity but impairs infectious virus production. J. Gen. Virol. 76 1917–1925. PubMed

Burstein, H., Bizub, D., and Skalka, A.M. 1991. Assembly and processing of avian retroviral Gag polyproteins containing linked protease dimers. J. Virol. 65 6165–6172. PubMed PMC

Cheng, Y.S., Yin, F.H., Foundling, S., Blomstrom, D., and Kettner, C.A. 1990. Stability and activity of human immunodeficiency virus protease: Comparison of the natural dimer with a homologous, single-chain tethered dimer. Proc. Natl. Acad. Sci. 87 9660–9664. PubMed PMC

Darke, P.L. 1994. Stability of dimeric retroviral proteases. Methods Enzymol. 241 104–127. PubMed

Darke, P.L., Jordan, S.P., Hall, D.L., Zugay, J.A., Shafer, J.A., and Kuo, L.C. 1994. Dissociation and association of the HIV-1 protease dimer subunits: Equilibria and rates. Biochemistry 33 98–105. PubMed

Dunbrack Jr., R.L. and Cohen, F.E. 1997. Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci. 6 1661–1681. PubMed PMC

Dunbrack Jr., R.L. and Karplus, M. 1993. Backbone-dependent rotamer library for proteins: Application to side-chain prediction. J. Mol. Biol. 230 543–574. PubMed

Dunn, B.M. 1998. Human immunodeficiency virus 1 retropepsin. In Handbook of proteolytic enzymes (eds. A.J. Barret et al.), pp. 919–928. Academic Press, London.

Foguel, D., Silva, J.L., and de Prat-Gay, G. 1998. Characterization of a partially folded monomer of the DNA-binding domain of human papilloma virus E2 protein obtained at high pressure. J. Biol. Chem. 273 9050–9057. PubMed

Grant, S.K., Deckman, I.C., Culp, J.S., Minnich, M.D., Brooks, I.S., Hensley, P., Debouck C., and Meek, T.D. 1992. Use of protein unfolding studies to determine the conformational and dimeric stabilities of HIV-1 and SIV proteases. Biochemistry 31 9491–9501. PubMed

Gulnik, S.V., Suvorov, L.I., Majer, P., Collins, J., Kane, B.P., Johnson, D.G., and Erickson, J.W. 1997. Design of sensitive fluorogenic substrates for human cathepsin D. FEBS Lett. 413 379–384. PubMed

Holzman, T.F., Kohlbrenner, W.E., Weigl, D., Rittenhouse, J., Kempf, D., and Erickson, J. 1991. Inhibitor stabilization of human immunodeficiency virus type-2 proteinase dimer formation. J. Biol. Chem. 266 19217–19220. PubMed

Ishima, R., Ghirlando, R., Tozser, J., Gronenborn, A.M., Torchia, D.A., and Louis, J.M. 2001. Folded monomer of HIV-1 protease. J. Biol. Chem. 276 49110–49116. PubMed

Jordan, S.P., Zugay, J., Darke, P.L., and Kuo, L.C. 1992. Activity and dimerization of human immunodeficiency virus protease as a function of solvent composition and enzyme concentration. J. Biol. Chem. 267 20028–20032. PubMed

Konvalinka, J., Strop, P., Velek, J., Cerna, V., Kostka, V., Phylip, L.H., Richards, A.D., Dunn, B.M., and Kay, J. 1990. Sub-site preferences of the aspartic proteinase from the human immunodeficiency virus, HIV-1. FEBS Lett. 268 35–38. PubMed

Konvalinka, J., Bláha, I., S̆krabana, R., Sedláček, J., Pichová, I., Kaprálek, F., Kostka, V., and S̆trop, P. 1991. Subsite specificity of the proteinase from myeloblastosis associated virus. FEBS Lett. 282 73–76. PubMed

Konvalinka, J., Hořejší, M., Andreánský, M., Novek, P., Pichová, I., Bláha, I., Fábry, M., Sedláček, J., Foundling, S., and S̆trop, P. 1992. An engineered retroviral proteinase from myeloblastosis-associated virus acquires pH dependence and substrate specificity of the HIV-1 proteinase. EMBO J. 11 1141–1144. PubMed PMC

Konvalinka, J., Litterst, M.A., Welker, R., Kottler, H., Rippmann, F., Heuser, A.M., and Krausslich, H.G. 1995. An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity. J. Virol. 69 7180–7186. PubMed PMC

Konvalinka, J., Litera, J., Weber, J., Vondrášek, J., Hradilek, M., Souček, M., Pichová, I., Majer, P., S̆trop, P., Sedláček, J., et al. 1997. Configurations of diastereomeric hydroxyethylene isosteres strongly affect biological activities of a series of specific inhibitors of human-immunodeficiency-virus proteinase. Eur. J. Biochem. 250 559–566. PubMed

Kräusslich, H.G. 1991. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc. Natl. Acad. Sci. 88 3213–3217. PubMed PMC

Kuzmič, P. 1993. Kinetic assay for HIV proteinase subunit dissociation. Biochem. Biophys. Res. Commun. 191 998–1003. PubMed

Louis, J.M., Ishima, R., Nesheiwat, I., Pannell, L.K., Lynch, S.M., Torchia, D.A., and Gronenborn, A.M. 2003. Revisiting monomeric HIV-1 protease: Characterization and redesign for improved properties. J. Biol. Chem. 278 6085–6092. PubMed

Majer, P., Urban, J., Gregorova, E., Konvalinka, J., Novek, P., Stehlikova, J., Andreansky, M., Sedlacek, J., and Strop, P. 1993. Specificity mapping of HIV-1 protease by reduced bond inhibitors. Arch. Biochem. Biophys. 304 1–8. PubMed

Matayoshi, E.D., Wang, G.T., Krafft, G.A., and Erickson, J. 1990. Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. Science 247 954–958. PubMed

Mohana-Borges, R., Pacheco, A.B., Sousa, F.J., Foguel, D., Almeida, D.F., and Silva, J.L. 2000. LexA repressor forms stable dimers in solution: The role of specific DNA in tightening protein–protein interactions. J. Biol. Chem. 275 4708–4712. PubMed

Pargellis, C.A., Morelock, M.M., Graham, E.T., Kinkade, P., Pav, S., Lubbe, K., Lamarre, D., and Anderson, P.C. 1994. Determination of kinetic rate constants for the binding of inhibitors to HIV-1 protease and for the association and dissociation of active homodimer. Biochemistry 33 12527–12534. PubMed

Pearl, L. and Blundell, T. 1984. The active site of aspartic proteinases. FEBS Lett. 174 96–101. PubMed

Pearl, L.H. and Taylor, W.R. 1987. A structural model for the retroviral proteases. Nature 329 351–354. PubMed

Pichová, I., S̆trop, P., Sedláček, J., Kaprálek, F., Beneš, V., Trávníček, M., Pavlíčková, L., Souček, M., Kostka, V., and Foundling, S. 1992. Isolation, biochemical characterization and crystallization of the p15gag proteinase of myeloblastosis associated virus expressed in E. coli. Int. J. Biochem. 24 235–242. PubMed

Ridky, T.W., Bizub-Bender, D., Cameron, C.E., Weber, I.T., Wlodawer, A., Copeland, T., Skalka, A.M., and Leis, J. 1996. Programming the Rous sarcoma virus protease to cleave new substrate sequences. J. Biol. Chem. 271 10538–10544. PubMed

Rose, J.R., Babe, L.M., and Craik, C.S. 1995. Defining the level of human immunodeficiency virus type 1 (HIV-1) protease activity required for HIV-1 particle maturation and infectivity. J. Virol. 69 2751–2758. PubMed PMC

Schatz, G.W., Reinking, J., Zippin, J., Nicholson, L.K., and Vogt, V.M. 2001. Importance of the N terminus of Rous sarcoma virus protease for structure and enzymatic function. J. Virol. 75 4761–4770. PubMed PMC

Silva, J.L., Oliveira, A.C., Gomes, A.M., Lima, L.M., Mohana-Borges, R., Pacheco, A.B., and Foguel, D. 2002. Pressure induces folding intermediates that are crucial for protein-DNA recognition and virus assembly. Biochim. Biophys. Acta 1595 250–265. PubMed

Stříšovský, K., Tessmer, U., Langner, J., Konvalinka, J., and Kräusslich, H.G. 2000. Systematic mutational analysis of the active-site threonine of HIV-1 proteinase: Re-thinking the “fireman’s grip” hypothesis. Protein Sci. 9 1631–1641. PubMed PMC

Suarez, M.C., Lehrer, S.S., and Silva, J.L. 2001. Local heterogeneity in the pressure denaturation of the coiled-coil tropomyosin because of subdomain folding units. Biochemistry 40 1300–1307. PubMed

Towler, E.M., Gulnik, S.V., Bhat, T.N., Xie, D., Gustschina, E., Sumpter, T.R., Robertson, N., Jones, C., Sauter, M., Mueller-Lantzsch, N., et al. 1998. Functional characterization of the protease of human endogenous retrovirus, K10: Can it complement HIV-1 protease? Biochemistry 37 17137–17144. PubMed

Uhlíková, T., Konvalinka, J., Pichová, I., Souček, M., Kraüsslich, H.G., and Vondrášek, J. 1996. A modular approach to HIV-1 proteinase inhibitor design. Biochem. Biophys. Res. Commun. 222 38–43. PubMed

Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B.K., Baldwin, E., Weber, I.T., Selk, L.M., Clawson, L., Schneider, J., and Kent, S.B. 1989. Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease. Science 245 616–621. PubMed

Xie, D., Gulnik, S., Gustchina, E., Yu, B., Shao, W., Qoronfleh, W., Nathan, A., and Erickson, J.W. 1999. Drug resistance mutations can effect dimer stability of HIV-1 protease at neutral pH. Protein Sci. 8 1702–1707. PubMed PMC

Zábranský, A. 1999. “Analysis of the protease from Mason-Pfizer monkey retrovirus.” PhD thesis, Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic.

Zábranský, A., Andreánsky, M., Hrušková-Heidingsfeldová, O., Havlíček, V., Hunter, E., Ruml, T., and Pichová, I. 1998. Three active forms of aspartic proteinase from Mason-Pfizer monkey virus. Virology 245 250–256. PubMed

Zamyatnin, A.A. 1972. Protein volume in solution. Prog. Biophys. Mol. Biol. 24 107–123. PubMed

Zhang, Z.Y., Poorman, R.A., Maggiora, L.L., Heinrikson, R.L., and Kezdy, F.J. 1991. Dissociative inhibition of dimeric enzymes: Kinetic characterization of the inhibition of HIV-1 protease by its COOH-terminal tetrapeptide. J. Biol. Chem. 266 15591–15594. PubMed

Zybarth, G. and Carter, C. 1995. Domains upstream of the protease (PR) in human immunodeficiency virus type 1 Gag-Pol influence PR autoprocessing. J. Virol. 69 3878–3884. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...