Yeast phospholipase C is required for stability of casein kinase I Yck2p and expression of hexose transporters

. 2017 Dec 01 ; 364 (22) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29087456

Grantová podpora
R15 GM120710 NIGMS NIH HHS - United States

Phospholipase C (Plc1p) in Saccharomyces cerevisiae is required for normal degradation of repressor Mth1p and expression of the HXT genes encoding cell membrane transporters of glucose. Plc1p is also required for normal localization of glucose transporters to the cell membrane. Consequently, plc1Δ cells display histone hypoacetylation and transcriptional defects due to reduced uptake and metabolism of glucose to acetyl-CoA, a substrate for histone acetyltransferases. In the presence of glucose, Mth1p is phosphorylated by casein kinase I Yck1/2p, ubiquitinated by the SCFGrr1 complex and degraded by the proteasome. Here, we show that while Plc1p does not affect the function of the SCFGrr1 complex or the proteasome, it is required for normal protein level of Yck2p. Since stability of Yck1/2p is regulated by a glucose-dependent mechanism, PLC1 inactivation results in destabilization of Yck1/2p and defect in Mth1p degradation. Based on our results and published data, we propose a model in which plc1Δ mutation causes increased internalization of glucose transporters, decreased transport of glucose into the cells, and consequently decreased stability of Yck1/2p, increased stability of Mth1p and decreased expression of the HXT genes.

Zobrazit více v PubMed

Alcaraz-Roman AR, Wente S. Insositol polyphosphates: a new frontier for regulating gene expression. Chromosoma 2008;117:1–13. PubMed

Babu P, Deschenes RJ, Robinson LC. Akr1p-dependent palmitoylation of Yck2p yeast casein kinase I is necessary and sufficient for plasma membrane targeting. J Biol Chem 2004;279:27138–47. PubMed

Benanti JA, Cheung SK, Brady MC et al. . A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic-gluconeogenetic switch. Nat Cell Biol 2007;9:1184–91. PubMed

Cooper KF, Mallory MJ, Strich R. Oxidative stress-induced destruction of the yeast C-type cyclin Ume3p requires phosphatidylinositol-specific phospholipase C and the 26S proteasome. Mol Cell Biol 1999;19:3338–48. PubMed PMC

De Lillo N, Romero C, Lin H et al. . Genetic evidence for a role of phospholipase C at the budding yeast kinetochore. Mol Genet Genomics 2003;269:261–70. PubMed

Demczuk A, Guha N, Nguyen PH et al. . Saccharomyces cerevisiae phospholipase C regulates transcription of Msn2p-dependent stress-responsive genes. Eukaryot Cell 2008;7:967–79. PubMed PMC

Dohmen RJ, Willers I, Marques AJ. Biting the hand that feeds: Rpn4-dependent feedback regulation of proteasome function. Biochim Biophys Acta 2007;1773:1599–604. PubMed

Feng Y, Davis NG. Akr1p and the type I casein kinases act prior to the ubiquitination step of yeast endocytosis: Akr1p is required for kinase localization to the plasma membrane. Mol Cell Biol 2000;20:5350–9. PubMed PMC

Flick KM, Spielewoy N, Kalashnikova TI et al. . Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol Biol Cell 2003;14:3230–41. PubMed PMC

Galdieri L, Chang J, Mehrotra S et al. . Yeast phospholipase C is required for normal acetyl-CoA homeostasis and global histone acetylation. J Biol Chem 2013;288:27986–98. PubMed PMC

Galdieri L, Zhang T, Rogerson D et al. . Reduced histone expression or a defect in chromatin assembly induces respiration. Mol Cell Biol 2016;36:1064–77. PubMed PMC

Gancedo JM. The early steps of glucose signaling in yeast. FEMS Microbiol Rev 2008;32:673–704. PubMed

Grousl T, Ivanov P, Frydlova I et al. . Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J Cell Sci 2009;122:2078–88. PubMed

Grousl T, Opekarova M, Stradalova V et al. . Evolutionary conserved 5’-3’ exoribonuclease Xrn1 accumulates at plasma membrane-associated eisosomes in post-diauxic yeast. PLoS One 2015;10:e0122770. PubMed PMC

Gupta R, Kus B, Fladd C et al. . Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast. Mol Syst Biol 2007;3:116. PubMed PMC

Hatch AJ, Odom AR, York JD. Inositol phosphate multikinase dependent transcriptional control. Adv Biol Regul 2017;64:9–19. PubMed PMC

Ho Y, Gruhler A, Heilbut A et al. . Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002;415:180–3. PubMed

Johnston M, Kim J-H. Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem Soc T 2005;33:247–52. PubMed

Ju D, Wang L, Mao X et al. . Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit. Biochem Bioph Res Co 2004;321:51–57. PubMed

Kaminska J, Spiess M, Stawiecka-Mirota M et al. . Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro. Eur J Cell Biol 2011;90:1016–28. PubMed

Kim JH, Johnston M. Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae. J Biol Chem 2006;281:26144–9. PubMed

Krogan NJ, Cagney G, Yu H et al. . Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006;440:637–43. PubMed

Kruegel U, Robison B, Dange T et al. . Elevated proteosome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet 2011;7:e1002253. PubMed PMC

Laribee RN, Shibata Y, Mersman DP et al. . CCR4/NOT complex associates with the proteasome and regulates histone methylation. P Natl Acad Sci USA 2007;104:5836–41. PubMed PMC

Lin H, Choi JH, Hasek J et al. . Phospholipase C is involved in kinetochore function in Saccharomyces cerevisiae. Mol Cell Biol 2000;20:3597–607. PubMed PMC

MacGurn JA, Hsu PC, Emr SD. Ubiquitin and membrane protein turnover: from cradle to grave. Annu Rev Biochem 2012;81:231–59. PubMed

Moriya H, Johnston M. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. P Natl Acad Sci USA 2004;101:1572–7. PubMed PMC

Özcan S, Leong T, Johnston M. Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol Cell Biol 1996;16:6419–26. PubMed PMC

Palomino A, Herrero P, Moreno F. Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter. Nucleic Acids Res 2006;34:1427–38. PubMed PMC

Panasenko OO, Collart MA. Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29. Mol Cell Biol 2011;31:1610–23. PubMed PMC

Pasula S, Chakraborty S, Choi JH et al. . Role of casein kinase I in the glucose sensor-mediated signaling pathway in yeast. BMC Cell Biol 2010;11:17. PubMed PMC

Reddi AR, Culotta VC. SOD1 integrates signals from oxygen and glucose to repress respiration. Cell 2013;152:224–35. PubMed PMC

Robinson LC, Menold MM, Garrett S et al. . Casein kinase I-like protein kinases encoded by YCK1 and YCK2 are required for yeast morphogenesis. Mol Cell Biol 1993;13:2870–81. PubMed PMC

Ruegger M, Dewey E, Gray WM et al. . The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Gene Dev. 1998;12:198–207. PubMed PMC

Santangelo GM. Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol R 2006;70:253–82. PubMed PMC

Schmidt MC, McCartney RR, Zhang X et al. . Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol Cell Biol 1999;19:4561–71. PubMed PMC

Sherman F. Getting started with yeast. Methods Enzymol 1991;194:3–21. PubMed

Tan X, Calderon-Villalobos LI, Sharon M et al. . Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 2007;446:640–5. PubMed

Tsui MM, York JD. Roles of inositol phosphates and inositol pyrophosphates in development, cell signaling and nuclear processes. Adv Enzyme Regul 2010;50:324–37. PubMed PMC

Vancura A, Sessler A, Leichus B et al. . A prenylation motif is required for plasma membrane localization and biochemical function of casein kinase I in budding yeast. J Biol Chem 1994;269:19271–8. PubMed

Wang L, Mao X, Ju D et al. . Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. J Biol Chem 2004;279:55218–23. PubMed

Xie Y, Varshavsky A. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. P Natl Acad Sci USA 2001;98:3056–61. PubMed PMC

York JD. Regulation of nuclear processes by inositol polyphosphates. Biochim Biophys Acta 2006;1761:552–9. PubMed

York JD, Odom AR, Murphy R et al. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 1999;285:96–100. PubMed

Yoshida A, Wei D, Nomura W et al. . Reduction of glucose uptake through inhibition of hexose transporters and enhancement of their endocytosis by methylglyoxal in Saccharomyces cerevisiae. J Biol Chem 2012;287:701–11. PubMed PMC

Zaman S, Lipman SI, Zhao X et al. . How Saccharomyces responds to nutrients. Annu Rev Genet 2008;42:27–81. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...