Does lower water availability limit stem CO2 efflux of oak and hornbeam coppices?

. 2024 Feb ; 16 (2) : plae023. [epub] 20240405

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38638333

Recent changes in water availability can be crucial for the development, growth and carbon budget of forests. Therefore, our aim was to determine the effect of reduced throughfall and severe summer drought on stem CO2 efflux as a function of temperature and stem increment. Stem CO2 efflux was measured using the chamber method on oak and hornbeam under four treatments: coppice, thinned coppice, and both coppice and thinned coppice with 30 %-reduced throughfall. The first year of the experiment had favourable soil water availability and the second year was characterized by a dry summer. While reduced throughfall had no effect on stem CO2 efflux, the summer drought decreased efflux by 43-81 % during July and August. The stem CO2 efflux was reduced less severely (by 13-40 %) in September when the drought persisted but the stem increment was already negligible. The stem increment was also strongly affected by the drought, which was reflected in its paired relationship with stem CO2 efflux over the two experimental years. The study showed that summer dry periods significantly and rapidly reduce stem CO2 efflux, whereas a constant 30 % rainfall reduction needs probably a longer time to affect stem properties, and indirectly stem CO2 efflux.

Zobrazit více v PubMed

Acosta M, Pavelka M, Pokorný R, Janouš D, Marek MV.. 2008. Seasonal variation in CO2 efflux of stems and branches of Norway spruce trees. Annals of Botany 101:469–477. PubMed PMC

Allen RG, Pereira LS, Raes D, Smith M.. 1998. Crop evapotranspiration. FAO Irrigation and Drainage Paper No. 56. Rome: FAO.

Amthor JS. 2000. The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 Years later. Annals of Botany 86:1–20.

Babst F, Bouriaud O, Papale D, Gielen B, Janssens Ivan A, Nikinmaa E, Ibrom A, Wu J, Bernhofer C, Köstner B, et al.. 2014. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytologist 201:1289–1303. PubMed

Cabon A, Mouillot F, Lempereur M, Ourcival JM, Simioni G, Limousin JM.. 2018. Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice. Forest Ecology and Management 409:333–342.

Chan T, Berninger F, Kolari P, Nikinmaa E, Hölttä T.. 2018. Linking stem growth respiration to the seasonal course of stem growth and GPP of Scots pine. Tree Physiology 38:1356–1370. PubMed PMC

CHMI. 2024. Historical data—meteorology and climatology. Czech hydrometeorological institute.

Cresswell R, Dupree R, Brown SP, Pereira CS, Skaf Munir S, Sorieul Mathias, Dupree P, Hill S.. 2021. Importance of water in maintaining softwood secondary cell wall nanostructure. Biomacromolecules 22:4669–4680. PubMed PMC

D’Andrea E, Rezaie N, Prislan P, Gričar J, Collalti A, Muhr J, Matteucci G.. 2020. Frost and drought: effects of extreme weather events on stem carbon dynamics in a Mediterranean beech forest. Plant Cell and Environment 43:2365–2379. PubMed

Darenova E, Čater M.. 2020. Effect of spatial scale and harvest on heterogeneity of forest floor CO2 efflux in a sessile oak forest. Catena 188:104455.

Darenova E, Acosta M, Pokorny R, Pavelka M.. 2018a. Variability in temperature dependence of stem CO2 efflux from Norway spruce trees. Tree Physiology 38:1333–1344. PubMed

Darenova E, Crabbe RA, Knott R, Uherková B, Kadavý J.. 2018b. Effect of coppicing, thinning and throughfall reduction on soil water content and soil CO2 efflux in a sessile oak forest. Silva Fennica 52:9927.

Darenova E, Horácek P, Krejza J, Pokorný R, Pavelka M.. 2020. Seasonally varying relationship between stem respiration, increment and carbon allocation of Norway spruce trees. Tree Physiology 40:943–955. PubMed

del Campo AD, González-Sanchis M, García-Prats A, Ceacero CJ, Lull C.. 2019. The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agricultural and Forest Meteorology 264:266–282.

del Campo AD, Otsuki K, Serengil Y, Blanco JA, Yousefpour R, Wei X.. 2022. A global synthesis on the effects of thinning on hydrological processes: implications for forest management. Forest Ecology and Management 519:120324.

De Lucia EH, Drake JE, Thomas RB, Gonzalez-Meler M.. 2007. Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Global Change Biology 13:1157–1167.

Evans J. 1992. Coppice forestry—an overview In: Buckley GP, ed. Ecology and management of coppice woodlands. Chapman & Hall, Springer Netherlands,18–27.

Fedorová B, Kadavý J, Adamec Z, Knott R, Kučera A, Kneifl M, Drápela K, Inurrigarro RO.. 2018. Effect of thinning and reduced throughfall in young coppice dominated by Quercus petraea (Matt.) Liebl. and Carpinus betulus L. Austrian Journal of Forest Science 135:1–17.

Fernández-martínez M, Vicca S, Janssens I, Luyssaert S, Campioli M, Sardans J, Estiarte M, Peñuelas J.. 2014. Spatial variability and controls over biomass stocks, carbon fluxes, and resource-use efficiencies across forest ecosystems. Trees—Structure and Function 28:597–611.

Gruber A, Baumgartner D, Zimmermann J, Oberhuber W.. 2009. Temporal dynamic of wood formation in Pinus cembra along the alpine treeline ecotone and the epaffect of climate variables. Trees—Structure and Function 23:623–635. PubMed PMC

Han F, Wang X, Zhou H, Li Y, Hu D.. 2017. Temporal dynamics and vertical variations in stem CO2 efflux of Styphnolobium japonicum. Journal of Plant Research 130:845–858. PubMed

Herrero C, Juez L, Tejedor C, Pando V, Bravo F.. 2014. Importance of root system in total biomass for Eucalyptus globulus in northern Spain. Biomass and Bioenergy 67:212–222.

Hilty J, Muller B, Pantin F, Leuzinger S.. 2021. Plant growth: the what, the how, and the why. The New Phytologist 232:25–41. PubMed

Jardine KJ, Tucker E, Dewhirst RA, Som S, Lei J, Young RP, Estrada MP, Su L, Fares S, Mortimer JC, et al.. 2022. Cell wall ester modifications and volatile emission signatures of plant response to abiotic stress. Plant Cell and Environment 45:3429–3444. PubMed PMC

Kadavý J, Kneifl M, Knott R.. 2011. Biodiversity and target management of endangered and protected species in coppices and coppices with standards included in system of Natura 2000: methodology of establishment of experimental research plots in the conversion to coppice and coppice-with-sta. Brno: Mendel University in Brno.

Khomik M, Arain MA, Brodeur JJ, Peichl M, Restrepo-Coup N, McLaren JD.. 2010. Relative contributions of soil, foliar, and woody tissue respiration to total ecosystem respiration in four pine forests of different ages. Journal of Geophysical Research, Biogeosciences 115:G03024.

Krejza J, Haeni M, Darenova E, Foltýnová L, Fajstavr M, Světlík J, Nezval O, Bednář P, Šigut L, Horáček P, et al.. 2022. Disentangling carbon uptake and allocation in the stems of a spruce forest. Environmental and Experimental Botany 196:104787.

Kunert N, El-madany TS, Maria L, Aparecido T, Wolf S, Potvin C.. 2019. Understanding the controls over forest carbon use efficiency on small spatial scales: effects of forest disturbance and tree diversity. Agricultural and Forest Meteorology 269–270:136–144.

Lavigne MB, Ryan MG.. 1997. Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites. Tree Physiology 17:543–551. PubMed

Leuschner C, Wedde P, Lübbe T.. 2019. The relation between pressure–volume curve traits and stomatal regulation of water potential in five temperate broadleaf tree species. Annals of Forest Science 76:60.

Litschmann T. 1991. A soil moisture sensor and its application in agriculture. Communications in Soil Science and Plant Analysis 22:409–418.

Liu C, Chen Z, Liu S, Cao K, Niu B, Liu X, Gao X.. 2023. Multi-year throughfall reduction enhanced the growth and non-structural carbohydrate storage of roots at the expenses of above-ground growth in a warm-temperate natural oak forest. Forest Ecosystems 10:100118.

Logli F, Joffre R.. 2001. Individual variability as related to stand structure and soil condition in a Mediterranean oak coppice. Forest Ecology and Management 142:53–63.

Maier CA, Johnsen KH, Clinton BD, Ludovici KH.. 2010. Relationships between stem CO2 efflux, substrate supply, and growth in young loblolly pine trees. New Phytologist 185:502–513. PubMed

Malhi Y, Baldocchi DD, Jarvis PG.. 1999. The carbon balance of tropical, temperate and boreal forests. Plant, Cell & Environment 22:715–740.

Pásztory Z, Börcsök Z, Ronyecz I, Mohácsi K, Molnár S, Kis S.. 2014. Oven dry density of sessile oak, Turkey oak and hornbeam in different region of Mecsek Mountain. Wood Research 59:683–694.

Petráš R, Mecko J, Krupová D, Pažitný A.. 2021. Aboveground biomass basic density of hardwood tree species. Wood Research 65:1001–1011.

Pfanz H, Aschan G, Langenfeld-Heyser R, Wittmann C, Loose M.. 2002. Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89:147–162. PubMed

Pietras J, Stojanović M, Knott R, Pokorný R.. 2016. Oak sprouts grow better than seedlings under drought stress. iForest 9:529–535.

Pretzsch H, Schütze G, Uhl E.. 2013. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biology (Stuttgart, Germany) 15:483–495. PubMed

Rambal S, Lempereur M, Limousin JM, Martin-Stpaul NK, Ourcival JM, Rodríguez-Calcerrada J.. 2014. How drought severity constrains gross primary production (GPP) and its partitioning among carbon pools in a Quercus ilex coppice? Biogeosciences 11:6855–6869.

Rodríguez-calcerrada J, Salomón RL, Gordaliza GG, Miranda JC, Miranda E, de Riva EG, Gil L.. 2019. Respiratory costs of producing and maintaining stem biomass in eight co-occurring tree species. Tree Physiology 39:1838–1854. PubMed

Rodríguez-Calcerrada J, Pérez-Ramos IM, Ourcival JM, Limousin JM, Joffre R, Rambal S.. 2011. Is selective thinning an adequate practice for adapting Quercus ilex coppices to climate change? Annals of Forest Science 68:575–585.

Rodríguez-Calcerrada J, Martin-StPaul NK, Lempereur M, Ourcival JM, Del Rey MC, Joffre R, Rambal S.. 2014. Stem CO2 efflux and its contribution to ecosystem CO2 efflux decrease with drought in a Mediterranean forest stand. Agricultural and Forest Meteorology 195–196:61–72.

Rodríguez-Calcerrada J, Rodrigues AM, António C, Perdiguero P, Pita P, Collada C, Li M, Gil L.. 2021. Stem metabolism under drought stress—a paradox of increasing respiratory substrates and decreasing respiratory rates. Physiologia Plantarum 172:391–404. PubMed

Rowland L, da Costa ACL, Oliveira AAR, Oliveira RS, Bittencourt PL, Costa PB, Giles AL, Sosa AI, Coughlin I, Godlee JL, et al.. 2018. Drought stress and tree size determine stem CO2 efflux in a tropical forest. The New Phytologist 218:1393–1405. PubMed PMC

Salomón RL, Valbuena-Carabaña M, Gil L, McGuire MA, Teskey RO, Aubrey DP, González-Doncel I, Rodríguez-Calcerrada J.. 2016. Temporal and spatial patterns of internal and external stem CO2 fluxes in a sub-Mediterranean oak. Tree Physiology 36:1409–1421. PubMed

Salomón RL, Rodríguez-Calcerrada J, Staudt M.. 2017. Carbon losses from respiration and emission of volatile organic compounds—the overlooked side of tree carbon budgets In: Gil-Pelegrín E, Peguero-Pina J, Sancho-Knapik D, eds. Oaks physiological ecology. Exploring the functional diversity of genus Quercus L. Tree Physiology, vol. 7. Cham: Springer, 327–359.

Salomón RL, De Schepper V, Valbuena-Carabaña M, Gil L, Steppe K.. 2018. Daytime depression in temperature-normalised stem CO2 efflux in young poplar trees is dominated by low turgor pressure rather than by internal transport of respired CO2. The New Phytologist 217:586–598. PubMed

Salomón RL, Peters RL, Zweifel R, Sass-Klaassen UGW, Stegehuis AI, Smiljanic M, Poyatos R, Babst F, Cienciala E, Fonti P, et al.. 2022. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications 13:28. PubMed PMC

Saveyn A, Steppe K, Lemeur R.. 2007a. Drought and the diurnal patterns of stem CO2 efflux and xylem CO2 concentration in young oak (Quercus robur). Tree Physiology 27:365–374. PubMed

Saveyn A, Steppe K, Lemeur R.. 2007b. Daytime depression in tree stem CO2 efflux rates: is it caused by low stem turgor pressure? Annals of Botany 99:477–485. PubMed PMC

Schindlbacher A, Wunderlich S, Borken W, Kitzler B, Zechmeister-Boltenstern S, Jandl R.. 2012. Soil respiration under climate change: prolonged summer drought offsets soil warming effects. Global Change Biology 18:2270–2279.

Sieferle RP. 2001. The subterranean forest: energy systems and the industrial revolution. Cambridge: White Horse Press.

Sousa VB, Cardoso S, Pereira H.. 2013. Ring width variation and heartwood development in Quercus faginea. Wood and Fiber Science 45:405–414.

Szatniewska J, Zavadilova I, Nezval O, Krejza J, Petrik P, Čater M, Stojanović M.. 2022. Species-specific growth and transpiration response to changing environmental conditions in floodplain forest. Forest Ecology and Management 516:120248.

Tarvainen L, Wallin G, Lim H, Linder S, Oren R, Löfvenius MO, Räntfors M, Tor-Ngern P, Marshall J.. 2018. Photosynthetic refixation varies along the stem and reduces CO2 efflux in mature boreal Pinus sylvestris trees. Tree Physiology 38:558–569. PubMed

Teskey RO, Saveyn A, Steppe K, McGuire MA.. 2008. Origin, fate and significance of CO2 in tree stems. The New Phytologist 177:17–32. PubMed

Van Kampen R, Fisichelli N, Zhang YJ, Wason J.. 2022. Drought timing and species growth phenology determine intra-annual recovery of tree height and diameter growth. AoB Plants 14:plac012. PubMed PMC

West PW. 2020. Do increasing respiratory costs explain the decline with age of forest growth rate? Journal of Forestry Research 31:693–712.

Will RE, Wilson SM, Zou CB, Hennessey TC.. 2013. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. The New Phytologist 200:366–374. PubMed

Wolf S, Paul-Limoges E.. 2023. Drought and heat reduce forest carbon uptake. Nature Communications 14:14–17. PubMed PMC

Wu XC, Liu HY, Hartmann H, Ciais P, Kimball JS, Schwalm CR, Camarero JJ, Chen AP, Gentine P, Yang YT, et al.. 2022. Timing and order of extreme drought and wetness setermine bioclimatic sensitivity of tree growth. Earth’s Future 10:e2021EF002530.

Xiao JL, Zeng F, He QL, Yao YX, Han X, Shi WY.. 2021. Responses of forest carbon cycle to drought and elevated CO2. Atmosphere 12:212.

Yang J, He Y, Aubrey DP, Zhuang Q, Teskey RO.. 2016. Global patterns and predictors of stem CO2 efflux in forest ecosystems. Global Change Biology 22:1433–1444. PubMed

Zha T, Kellomäki S, Wang KY, Ryyppö A, Niinistö S.. 2004. Seasonal and annual stem respiration of scots pine trees under boreal conditions. Annals of Botany 94:889–896. PubMed PMC

Zhao K, Zheng M, Fahey TJ, Jia Z, Ma L.. 2018. Vertical gradients and seasonal variations in the stem CO2 efflux of Larix principis-rupprechtii Mayr. Agricultural and Forest Meteorology 262:71–80.

Zhou S, Park Williams A, Berg AM, Cook BI, Zhang Y, Hagemann S, Lorenz R, Seneviratne SI, Gentine P.. 2019. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proceedings of the National Academy of Sciences of the United States of America 116:18848–18853. PubMed PMC

Zhu XL, Si JH, He XH, Jia B, Zhou DM, Wang CL, Qin J, Liu ZJ.. 2024. Effects of long-term afforestation on soil water and carbon in the Alxa plateau. Frontiers in Plant Science 14:1273108. PubMed PMC

Zweifel R, Haeni M, Buchmann N, Eugster W.. 2016. Are trees able to grow in periods of stem shrinkage? The New Phytologist 211:839–849. PubMed

Zweifel R, Sterck F, Braun S, Buchmann N, Eugster W, Gessler A, Häni M, Peters RL, Walthert L, Wilhelm M, et al.. 2021. Why trees grow at night. The New Phytologist 231:2174–2185. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...