Crystal structures of inhibitor complexes of M-PMV protease with visible flap loops
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33786913
PubMed Central
PMC8138519
DOI
10.1002/pro.4072
Knihovny.cz E-zdroje
- Klíčová slova
- M-PMV, Mason-Pfizer monkey virus, active site architecture, aspartic protease, dimer, flap structure, inhibitor, retropepsin, retrovirus,
- MeSH
- inhibitory proteas chemie MeSH
- Masonův-Pfizerův opičí virus enzymologie genetika MeSH
- missense mutace MeSH
- pepstatiny chemie MeSH
- proteasy chemie genetika MeSH
- sekundární struktura proteinů MeSH
- substituce aminokyselin MeSH
- virové proteiny antagonisté a inhibitory chemie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- inhibitory proteas MeSH
- pepstatin MeSH Prohlížeč
- pepstatiny MeSH
- proteasy MeSH
- virové proteiny MeSH
Mason-Pfizer monkey virus protease (PR) was crystallized in complex with two pepstatin-based inhibitors in P1 space group. In both crystal structures, the extended flap loops that lock the inhibitor/substrate over the active site, are visible in the electron density either completely or with only small gaps, providing the first observation of the conformation of the flap loops in dimeric complex form of this retropepsin. The H-bond network in the active site (with D26N mutation) differs from that reported for the P21 crystal structures and is similar to a rarely occurring system in HIV-1 PR.
Zobrazit více v PubMed
Miller M, Jaskólski M, Rao JKM, Leis J, Wlodawer A. Crystal structure of a retroviral protease proves relationship to aspartic protease family. Nature. 1989;337:576–579. PubMed
Dunn BM, Goodenow MM, Gustchina A, Wlodawer A. Retroviral proteases. Genome Biol. 2002;3:REVIEWS3006. PubMed PMC
Veverka V, Bauerova H, Zabransky A, et al. Three‐dimensional structure of a monomeric form of a retroviral protease. J Mol Biol. 2003;333:771–780. PubMed
Khatib F, DiMaio F, FoldIt Contenders Group , et al. Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nat Struct Mol Biol. 2011;18:1175–1177. PubMed PMC
Gilski M, Kazmierczyk M, Krzywda S, et al. High‐resolution structure of a retroviral protease folded as a monomer. Acta Cryst D. 2011;67:907–914. PubMed PMC
Wosicki S, Gilski M, Zabranska H, Pichova I, Jaskolski M. Comparison of a retroviral protease in monomeric and dimeric states. Acta Cryst D. 2019;75:904–917. PubMed
Liu Z, Huang X, Hu L, et al. Effects of hinge‐region natural polymorphisms on human immunodeficiency virus‐type 1 protease structure, dynamics, and drug pressure evolution. J Biol Chem. 2016;291:22741–22756. PubMed PMC
Prabu‐Jeyabalan M, Nalivaika EA, King NM, Schiffer CA. Viability of a drug‐resistant human immunodeficiency virus type 1 protease variant: structural insights for better antiviral therapy. J Virol. 2003;77:1306–1315. PubMed PMC
Liebschner D, Afonine PV, Moriarty NW, et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Cryst D. 2017;73:148–157. PubMed PMC
Jaskolski M, Tomasselli AG, Sawyer TK, et al. Structure at 2.5‐.ANG. Resolution of chemically synthesized human immunodeficiency virus type 1 protease complexed with a hydroxyethylene‐based inhibitor. Biochemistry. 1991;30:1600–1609. PubMed
Palese LL. Conformations of the HIV‐1 protease: a crystal structure data set analysis. Biochim Biophys Acta Proteins Proteom. 2017;1865:1416–1422. PubMed
Zabranska H, Tuma R, Kluh I, et al. The role of the S‐S bridge in retroviral protease function and virion maturation. J Mol Biol. 2007;365:1493–1504. PubMed
Kabsch W. XDS. XDS Acta Cryst D. 2010;66:125–132. PubMed PMC
McCoy AJ, Grosse‐Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Cryst. 2007;40:658–674. PubMed PMC
Liebschner D, Afonine PV, Baker ML, et al. Macromolecular structure determination using X‐rays, neutrons and electrons: recent developments in Phenix. Acta Cryst D. 2019;75:861–877. PubMed PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of coot. Acta Cryst D. 2010;66:486–501. PubMed PMC
Painter J, Merritt EA. TLSMD web server for the generation of multi‐group TLS models. J Appl Cryst. 2006;39:109–111.
Lebedev AA, Young P, Isupov MN, Moroz OV, Vagin AA, Murshudov GN. JLigand: a graphical tool for the CCP4 template‐restraint library. Acta Cryst D. 2012;68:431–440. PubMed PMC
Miller M, Schneider J, Sathyanarayana BK, et al. Structure of complex of synthetic HIV‐1 protease with a substrate‐based inhibitor at 2.3 a resolution. Science. 1989;246:1149–1152. PubMed
Wlodawer A, Miller M, Jaskolski M, et al. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV‐1 protease. Science. 1989;245:616–621. PubMed