Differences and commonalities in plasma membrane recruitment of the two morphogenetically distinct retroviruses HIV-1 and MMTV

. 2020 Jun 26 ; 295 (26) : 8819-8833. [epub] 20200508

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32385109
Odkazy

PubMed 32385109
PubMed Central PMC7324529
DOI 10.1074/jbc.ra119.011991
PII: S0021-9258(17)49376-8
Knihovny.cz E-zdroje

Retroviral Gag polyproteins are targeted to the inner leaflet of the plasma membrane through their N-terminal matrix (MA) domain. Because retroviruses of different morphogenetic types assemble their immature particles in distinct regions of the host cell, the mechanism of MA-mediated plasma membrane targeting differs among distinct retroviral morphogenetic types. Here, we focused on possible mechanistic differences of the MA-mediated plasma membrane targeting of the B-type mouse mammary tumor virus (MMTV) and C-type HIV-1, which assemble in the cytoplasm and at the plasma membrane, respectively. Molecular dynamics simulations, together with surface mapping, indicated that, similarly to HIV-1, MMTV uses a myristic switch to anchor the MA to the membrane and electrostatically interacts with phosphatidylinositol 4,5-bisphosphate to stabilize MA orientation. We observed that the affinity of MMTV MA to the membrane is lower than that of HIV-1 MA, possibly related to their different topologies and the number of basic residues in the highly basic MA region. The latter probably reflects the requirement of C-type retroviruses for tighter membrane binding, essential for assembly, unlike for D/B-type retroviruses, which assemble in the cytoplasm. A comparison of the membrane topology of the HIV-1 MA, using the surface-mapping method and molecular dynamics simulations, revealed that the residues at the HIV-1 MA C terminus help stabilize protein-protein interactions within the HIV-1 MA lattice at the plasma membrane. In summary, HIV-1 and MMTV share common features such as membrane binding of the MA via hydrophobic interactions and exhibit several differences, including lower membrane affinity of MMTV MA.

Erratum v

PubMed

Zobrazit více v PubMed

Bernhard W. (1958) Electron microscopy of tumor cells and tumor viruses: a review. Cancer Res. 18, 491–509 PubMed

Bernhard W. (1960) The detection and study of tumor viruses with the electron microscope. Cancer Res. 20, 712–727 PubMed

Fine D., and Schochetman G. (1978) Type-D primate retroviruses. Review. Cancer Res. 38, 3123–3139 PubMed

Gelderblom H. R., Ozel M., and Pauli G. (1989) Morphogenesis and morphology of HIV structure–function relations. Arch. Virol. 106, 1–13 10.1007/BF01311033 PubMed DOI

Zhou W., Parent L. J., Wills J. W., and Resh M. D. (1994) Identification of a membrane-binding domain within the amino-terminal region of human-immunodeficiency-virus type-1 Gag protein which interacts with acidic phospholipids. J. Virol. 68, 2556–2569 10.1128/JVI.68.4.2556-2569.1994 PubMed DOI PMC

Rhee S. S., and Hunter E. (1987) Myristylation is required for intracellular-transport but not for assembly of D-type retrovirus capsids. J. Virol. 61, 1045–1053 10.1128/JVI.61.4.1045-1053.1987 PubMed DOI PMC

Rhee S. S., and Hunter E. (1990) A single amino-acid substitution within the matrix protein of a type-D retrovirus converts its morphogenesis to that of a type-C retrovirus. Cell 63, 77–86 10.1016/0092-8674(90)90289-Q PubMed DOI

Rhee S. S., and Hunter E. (1991) Amino-acid substitutions within the matrix protein of type-D retroviruses affect assembly, transport and membrane association of a capsid. EMBO J. 10, 535–546 10.1002/j.1460-2075.1991.tb07980.x PubMed DOI PMC

Zhang G., Sharon D., Jovel J., Liu L., Wine E., Tahbaz N., Indik S., and Mason A. (2015) Pericentriolar targeting of the mouse mammary tumor virus GAG protein. PLoS One 10, e0131515 10.1371/journal.pone.0131515 PubMed DOI PMC

Vlach J., Lipov J., Rumlová M., Veverka V., Lang J., Srb P., Knejzlík Z., Pichová I., Hunter E., Hrabal R., and Ruml T. (2008) D-retrovirus morphogenetic switch driven by the targeting signal accessibility to Tctex-1 of dynein. Proc. Natl. Acad. Sci. U.S.A. 105, 10565–10570 10.1073/pnas.0801765105 PubMed DOI PMC

Yasuda J., and Hunter E. (2000) Role of matrix protein in the type D retrovirus replication cycle: importance of the arginine residue at position 55. Virology 268, 533–538 10.1006/viro.1999.0179 PubMed DOI

Choi G., Park S., Choi B., Hong S., Lee J., Hunter E., and Rhee S. S. (1999) Identification of a cytoplasmic targeting/retention signal in a retroviral Gag polyprotein. J. Virol. 73, 5431–5437 10.1128/JVI.73.7.5431-5437.1999 PubMed DOI PMC

Lindwasser O. W., and Resh M. D. (2002) Myristoylation as a target for inhibiting HIV assembly: unsaturated fatty acids block viral budding. Proc. Natl. Acad. Sci. U.S.A. 99, 13037–13042 10.1073/pnas.212409999 PubMed DOI PMC

Freed E. O., Orenstein J. M., Buckler-White A. J., and Martin M. A. (1994) Single amino-acid changes in the human-immunodeficiency-virus type-1 matrix protein block virus particle-production. J. Virol. 68, 5311–5320 10.1128/JVI.68.8.5311-5320.1994 PubMed DOI PMC

Stansell E., Apkarian R., Haubova S., Diehl W. E., Tytler E. M., and Hunter E. (2007) Basic residues in the Mason–Pfizer monkey virus gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. J. Virol. 81, 8977–8988 10.1128/JVI.00657-07 PubMed DOI PMC

Tang C., Loeliger E., Luncsford P., Kinde I., Beckett D., and Summers M. F. (2004) Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc. Natl. Acad. Sci. U.S.A. 101, 517–522 10.1073/pnas.0305665101 PubMed DOI PMC

Ono A., Ablan S. D., Lockett S. J., Nagashima K., and Freed E. O. (2004) Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 gag targeting to the plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 101, 14889–14894 10.1073/pnas.0405596101 PubMed DOI PMC

Saad J. S., Miller J., Tai J., Kim A., Ghanam R. H., and Summers M. F. (2006) Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc. Natl. Acad. Sci. U.S.A. 103, 11364–11369 10.1073/pnas.0602818103 PubMed DOI PMC

Chukkapalli V., Hogue I. B., Boyko V., Hu W. S., and Ono A. (2008) Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient Gag membrane binding. J. Virol. 82, 2405–2417 10.1128/JVI.01614-07 PubMed DOI PMC

Mercredi P. Y., Bucca N., Loeliger B., Gaines C. R., Mehta M., Bhargava P., Tedbury P. R., Charlier L., Floquet N., Muriaux D., Favard C., Sanders C. R., Freed E. O., Marchant J., and Summers M. F. (2016) Structural and molecular determinants of membrane binding by the HIV-1. Matrix Protein. J. Mol. Biol. 428, 1637–1655 10.1016/j.jmb.2016.03.005 PubMed DOI PMC

Charlier L., Louet M., Chaloin L., Fuchs P., Martinez J., Muriaux D., Favard C., and Floquet N. (2014) Coarse-grained simulations of the HIV-1 matrix protein anchoring: revisiting its assembly on membrane domains. Biophys. J. 106, 577–585 10.1016/j.bpj.2013.12.019 PubMed DOI PMC

Vlach J., and Saad J. S. (2013) Trio engagement via plasma membrane phospholipids and the myristoyl moiety governs HIV-1 matrix binding to bilayers. Proc. Natl. Acad. Sci. U.S.A. 110, 3525–3530 10.1073/pnas.1216655110 PubMed DOI PMC

Dick R. A., Goh S. L., Feigenson G. W., and Vogt V. M. (2012) HIV-1 Gag protein can sense the cholesterol and acyl chain environment in model membranes. Proc. Natl. Acad. Sci. U.S.A. 109, 18761–18766 10.1073/pnas.1209408109 PubMed DOI PMC

Aloia R. C., Tian H., and Jensen F. C. (1993) Lipid-composition and fluidity of the human-immunodeficiency-virus envelope and host-cell plasma-membranes. Proc. Natl. Acad. Sci. U.S.A. 90, 5181–5185 10.1073/pnas.90.11.5181 PubMed DOI PMC

Brügger B., Glass B., Haberkant P., Leibrecht I., Wieland F. T., and Kräusslich H. G. (2006) The HIV lipidome: A raft with an unusual composition. Proc. Natl. Acad. Sci. U.S.A. 103, 2641–2646 10.1073/pnas.0511136103 PubMed DOI PMC

Lindwasser O. W., and Resh M. D. (2001) Multimerization of human immunodeficiency virus type 1 gag promotes its localization to barges, raft-like membrane microdomains. J. Virol. 75, 7913–7924 10.1128/JVI.75.17.7913-7924.2001 PubMed DOI PMC

Yandrapalli N., Lubart Q., Tanwar H. S., Picart C., Mak J., Muriaux D., and Favard C. (2016) Self assembly of HIV-1 Gag protein on lipid membranes generates PI(4,5)P(2)/cholesterol nanoclusters. Sci. Rep. 6, 39332 10.1038/srep39332 PubMed DOI PMC

Erdie C. R., and Wills J. W. (1990) Myristylation of Rous-sarcoma virus Gag protein does not prevent replication in avian cells. J. Virol. 64, 5204–5208 10.1128/JVI.64.10.5204-5208.1990 PubMed DOI PMC

Provitera P., Bouamr F., Murray D., Carter C., and Scarlata S. (2000) Binding of equine infectious anemia virus matrix protein to membrane bilayers involves multiple interactions. J. Mol. Biol. 296, 887–898 10.1006/jmbi.1999.3482 PubMed DOI

Dalton A. K., Murray P. S., Murray D., and Vogt V. M. (2005) Biochemical characterization of Rous sarcoma virus MA protein interaction with membranes. J. Virol. 79, 6227–6238 10.1128/JVI.79.10.6227-6238.2005 PubMed DOI PMC

Vlach J., Eastep G. N., Ghanam R. H., Watanabe S. M., Carter C. A., and Saad J. S. (2018) Structural basis for targeting avian sarcoma virus Gag polyprotein to the plasma membrane for virus assembly. J. Biol. Chem. 293, 18828–18840 10.1074/jbc.RA118.003944 PubMed DOI PMC

Watanabe S. M., Medina G. N., Eastep G. N., Ghanam R. H., Vlach J., Saad J. S., and Carter C. A. (2018) The matrix domain of the Gag protein from avian sarcoma virus contains a PI(4,5)P-2-binding site that targets Gag to the cell periphery. J. Biol. Chem. 293, 18841–18853 10.1074/jbc.RA118.003947 PubMed DOI PMC

Fernandes F., Chen K., Ehrlich L. S., Jin J., Chen M. H., Medina G. N., Symons M., Montelaro R., Donaldson J., Tjandra N., and Carter C. A. (2011) Phosphoinositides direct equine infectious anemia virus Gag trafficking and release. Traffic 12, 438–451 10.1111/j.1600-0854.2010.01153.x PubMed DOI PMC

Nadaraia-Hoke S., Bann D. V., Lochmann T. L., Gudleski-O'Regan N., and Parent L. J. (2013) Alterations in the MA and NC domains modulate phosphoinositide-dependent plasma membrane localization of the Rous sarcoma virus Gag protein. J. Virol. 87, 3609–3615 10.1128/JVI.03059-12 PubMed DOI PMC

Inlora J., Collins D. R., Trubin M. E., Chung J. Y., and Ono A. (2014) Membrane binding and subcellular localization of retroviral Gag proteins are differentially regulated by MA interactions with phosphatidylinositol-(4,5)-bisphosphate and RNA. Mbio 5, e02202–14 10.1128/mBio.02202-14 PubMed DOI PMC

Inlora J., Chukkapalli V., Derse D., and Ono A. (2011) Gag localization and virus-like particle release mediated by the matrix domain of human T-lymphotropic virus type 1 Gag are less dependent on phosphatidylinositol-(4,5)-bisphosphate than those mediated by the matrix domain of HIV-1 Gag. J. Virol. 85, 3802–3810 10.1128/JVI.02383-10 PubMed DOI PMC

Saad J. S., Ablan S. D., Ghanam R. H., Kim A., Andrews K., Nagashima K., Soheilian F., Freed E. O., and Summers M. F. (2008) Structure of the myristylated human immunodeficiency virus type 2 matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in membrane targeting. J. Mol. Biol. 382, 434–447 10.1016/j.jmb.2008.07.027 PubMed DOI PMC

Prchal J., Srb P., Hunter E., Ruml T., and Hrabal R. (2012) The structure of myristoylated Mason–Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding. J. Mol. Biol. 423, 427–438 10.1016/j.jmb.2012.07.021 PubMed DOI PMC

Junková P., Prchal J., Spiwok V., Pleskot R., Kadlec J., Krásný L., Hynek R., Hrabal R., and Ruml T. (2016) Molecular aspects of the interaction between Mason–Pfizer monkey virus matrix protein and artificial phospholipid membrane. Proteins 84, 1717–1727 10.1002/prot.25156 PubMed DOI

Vlach J., Srb P., Prchal J., Grocký M., Lang J., Ruml T., and Hrabal R. (2009) Nonmyristoylated matrix protein from the Mason–Pfizer monkey virus forms oligomers. J. Mol. Biol. 390, 967–980 10.1016/j.jmb.2009.05.063 PubMed DOI

Kroupa T., Langerová H., Doležal M., Prchal J., Spiwok V., Hunter E., Rumlová M., Hrabal R., and Ruml T. (2016) Membrane interactions of the Mason–Pfizer monkey virus matrix protein and its budding deficient mutants. J. Mol. Biol. 428, 4708–4722 10.1016/j.jmb.2016.10.010 PubMed DOI

Mendoza V. L., and Vachet R. W. (2009) Probing protein structure by amino acid–specific covalent labeling and mass spectrometry. Mass Spectrom. Rev. 28, 785–815 10.1002/mas.20203 PubMed DOI PMC

Murphy R. E., Samal A. B., Vlach J., Mas V., Prevelige P. E. Jr., and Saad J. S. (2019) Structural and biophysical characterizations of HIV-1 matrix trimer binding to lipid nanodiscs shed light on virus assembly. J. Biol. Chem. 294, 18600–18612 10.1074/jbc.RA119.010997 PubMed DOI PMC

Doležal M., Zábranský A., Dostál J., Vaněk O., Brynda J., Lepšík M., Hadravová R., and Pichová I. (2016) Myristoylation drives dimerization of matrix protein from mouse mammary tumor virus. Retrovirology 13, 2 10.1186/s12977-015-0235-8 PubMed DOI PMC

Valentine K. G., Peterson R. W., Saad J. S., Summers M. F., Xu X., Ames J. B., and Wand A. J. (2010) Reverse micelle encapsulation of membrane-anchored proteins for solution NMR studies. Structure 18, 9–16 10.1016/j.str.2009.11.010 PubMed DOI PMC

Ono A., Orenstein J. M., and Freed E. O. (2000) Role of the gag matrix domain in targeting human immunodeficiency virus type 1 assembly. J. Virol. 74, 2855–2866 10.1128/JVI.74.6.2855-2866.2000 PubMed DOI PMC

Shkriabai N., Datta S. A., Zhao Z., Hess S., Rein A., and Kvaratskhelia M. (2006) Interactions of HIV-1 Gag with assembly cofactors. Biochemistry 45, 4077–4083 10.1021/bi052308e PubMed DOI

Joshi A., Ablan S. D., Soheilian F., Nagashima K., and Freed E. O. (2009) Evidence that productive human immunodeficiency virus type 1 assembly can occur in an intracellular compartment. J. Virol. 83, 5375–5387 10.1128/JVI.00109-09 PubMed DOI PMC

Ono A., and Freed E. O. (2004) Cell-type-dependent targeting of human immunodeficiency virus type 1 assembly to the plasma membrane and the multivesicular body. J. Virol. 78, 1552–1563 10.1128/JVI.78.3.1552-1563.2004 PubMed DOI PMC

Chukkapalli V., Oh S. J., and Ono A. (2010) Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain. Proc. Natl. Acad. Sci. U.S.A. 107, 1600–1605 10.1073/pnas.0908661107 PubMed DOI PMC

Lochrie M. A., Waugh S., Pratt D. G. Jr., Clever J., Parslow T. G., and Polisky B. (1997) In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein. Nucleic Acids Res. 25, 2902–2910 10.1093/nar/25.14.2902 PubMed DOI PMC

Burniston M. T., Cimarelli A., Colgan J., Curtis S. P., and Luban J. (1999) Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleocapsid domain and RNA and is promoted by the capsid-dimer interface and the basic region of matrix protein. J. Virol. 73, 8527–8540 10.1128/JVI.73.10.8527-8540.1999 PubMed DOI PMC

Ott D. E., Coren L. V., and Gagliardi T. D. (2005) Redundant roles for nucleocapsid and matrix RNA-binding sequences in human immunodeficiency virus type 1 assembly. J. Virol. 79, 13839–13847 10.1128/JVI.79.22.13839-13847.2005 PubMed DOI PMC

Hearps A. C., Wagstaff K. M., Piller S. C., and Jans D. A. (2008) The N-terminal basic domain of the HIV-1 matrix protein does not contain a conventional nuclear localization sequence but is required for DNA binding and protein self-association. Biochemistry 47, 2199–2210 10.1021/bi701360j PubMed DOI

Ramalingam D., Duclair S., Datta S. A., Ellington A., Rein A., and Prasad V. R. (2011) RNA aptamers directed to human immunodeficiency virus type 1 Gag polyprotein bind to the matrix and nucleocapsid domains and inhibit virus production. J. Virol. 85, 305–314 10.1128/JVI.02626-09 PubMed DOI PMC

Kutluay S. B., Zang T., Blanco-Melo D., Powell C., Jannain D., Errando M., and Bieniasz P. D. (2014) Global changes in the RNA binding specificity of HIV-1 Gag regulate virion genesis. Cell 159, 1096–1109 10.1016/j.cell.2014.09.057 PubMed DOI PMC

Alfadhli A., Still A., and Barklis E. (2009) Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids. J. Virol. 83, 12196–12203 10.1128/JVI.01197-09 PubMed DOI PMC

Gaines C. R., Tkacik E., Rivera-Oven A., Somani P., Achimovich A., Alabi T., Zhu A., Getachew N., Yang A. L., McDonough M., Hawkins T., Spadaro Z., and Summers M. F. (2018) HIV-1 matrix protein interactions with tRNA: implications for membrane targeting. J. Mol. Biol. 430, 2113–2127 10.1016/j.jmb.2018.04.042 PubMed DOI PMC

Thornhill D., Olety B., and Ono A. (2019) Relationships between MA-RNA binding in cells and suppression of HIV-1 Gag mislocalization to intracellular membranes. J. Virol. 93, e00756–19 10.1128/JVI.00756-19 PubMed DOI PMC

Hill C. P., Worthylake D., Bancroft D. P., Christensen A. M., and Sundquist W. I. (1996) Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc. Natl. Acad. Sci. U.S.A. 93, 3099–3104 10.1073/pnas.93.7.3099 PubMed DOI PMC

Tedbury P. R., Novikova M., Ablan S. D., and Freed E. O. (2016) Biochemical evidence of a role for matrix trimerization in HIV-1 envelope glycoprotein incorporation. Proc. Natl. Acad. Sci. U.S.A. 113, E182–E190 10.1073/pnas.1516618113 PubMed DOI PMC

Alfadhli A., Barklis R. L., and Barklis E. (2009) HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. Virology 387, 466–472 10.1016/j.virol.2009.02.048 PubMed DOI PMC

Alfadhli A., Huseby D., Kapit E., Colman D., and Barklis E. (2007) Human immunodeficiency virus type 1 matrix protein assembles on membranes as a hexamer. J. Virol. 81, 1472–1478 10.1128/JVI.02122-06 PubMed DOI PMC

Freed E. O., and Martin M. A. (1995) Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino-acid substitutions in the human-immunodeficiency-virus type-1 matrix. J. Virol. 69, 1984–1989 10.1128/JVI.69.3.1984-1989.1995 PubMed DOI PMC

Ono A., Huang M., and Freed E. O. (1997) Characterization of human immunodeficiency virus type 1 matrix revertants: effects on virus assembly, Gag processing, and env incorporation into virions. J. Virol. 71, 4409–4418 10.1128/JVI.71.6.4409-4418.1997 PubMed DOI PMC

Tedbury P. R., Ablan S. D., and Freed E. O. (2013) Global rescue of defects in HIV-1 envelope glycoprotein incorporation: implications for matrix structure. PLoS Pathog. 9, e1003739 10.1371/journal.ppat.1003739 PubMed DOI PMC

Kiernan R. E., Ono A., Englund G., and Freed E. O. (1998) Role of matrix in an early postentry step in the human immunodeficiency virus type 1 life cycle. J. Virol. 72, 4116–4126 10.1128/JVI.72.5.4116-4126.1998 PubMed DOI PMC

Brandano L., and Stevenson M. (2012) A highly conserved residue in the C-terminal helix of HIV-1 matrix is required for envelope incorporation into virus particles. J. Virol. 86, 2347–2359 10.1128/JVI.06047-11 PubMed DOI PMC

Dorfman T., Mammano F., Haseltine W. A., and Göttlinger H. G. (1994) Role of the matrix protein in the virion association of the human-immunodeficiency-virus type-1 envelope glycoprotein. J. Virol. 68, 1689–1696 10.1128/JVI.68.3.1689-1696.1994 PubMed DOI PMC

Sanford B., Li Y., Maly C. J., Madson C. J., Chen H., Zhou Y., and Belshan M. (2014) Deletions in the fifth α helix of HIV-1 matrix block virus release. Virology 468–470, 293–302 10.1016/j.virol.2014.08.017 PubMed DOI PMC

Datta S. A., Zhao Z., Clark P. K., Tarasov S., Alexandratos J. N., Campbell S. J., Kvaratskhelia M., Lebowitz J., and Rein A. (2007) Interactions between HIV-1 Gag molecules in solution: an inositol phosphate-mediated switch. J. Mol. Biol. 365, 799–811 10.1016/j.jmb.2006.10.072 PubMed DOI PMC

Ghanam R. H., Fernandez T. F., Fledderman E. L., and Saad J. S. (2010) Binding of calmodulin to the HIV-1 matrix protein triggers myristate exposure. J. Biol. Chem. 285, 41911–41920 10.1074/jbc.M110.179093 PubMed DOI PMC

Vlach J., Samal A. B., and Saad J. S. (2014) Solution structure of calmodulin bound to the binding domain of the HIV-1 matrix protein. J. Biol. Chem. 289, 8697–8705 10.1074/jbc.M113.543694 PubMed DOI PMC

Hunter E., and Swanstrom R. (1990) Retrovirus envelope glycoproteins. Curr. Top. Microbiol. Immunol. 157, 187–253 10.1007/978-3-642-75218-6_7 PubMed DOI

Checkley M. A., Luttge B. G., and Freed E. O. (2011) HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J. Mol. Biol. 410, 582–608 10.1016/j.jmb.2011.04.042 PubMed DOI PMC

Prchal J., Junkova P., Strmiskova M., Lipov J., Hynek R., Ruml T., and Hrabal R. (2011) Expression and purification of myristoylated matrix protein of Mason–Pfizer monkey virus for NMR and MS measurements. Protein Expr. Purif. 79, 122–127 10.1016/j.pep.2011.05.010 PubMed DOI PMC

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., Inuganti A., Griss J., Mayer G., Eisenacher M., Pérez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz S., et al. (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 10.1093/nar/gky1106 PubMed DOI PMC

de Jong D. H., Singh G., Bennett W. F., Arnarez C., Wassenaar T. A., Schäfer L. V., Periole X., Tieleman D. P., and Marrink S. J. (2013) Improved parameters for the Martini coarse-grained protein force field. J. Chem. Theory Comput. 9, 687–697 10.1021/ct300646g PubMed DOI

Monticelli L., Kandasamy S. K., Periole X., Larson R. G., Tieleman D. P., and Marrink S. J. (2008) The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4, 819–834 10.1021/ct700324x PubMed DOI

Marrink S. J., Risselada H. J., Yefimov S., Tieleman D. P., and de Vries A. H. (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 10.1021/jp071097f PubMed DOI

Periole X., Cavalli M., Marrink S. J., and Ceruso M. A. (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput. 5, 2531–2543 10.1021/ct9002114 PubMed DOI

Ingólfsson H. I., Melo M. N., van Eerden F. J., Arnarez C., Lopez C. A., Wassenaar T. A., Periole X., de Vries A. H., Tieleman D. P., and Marrink S. J. (2014) Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136, 14554–14559 10.1021/ja507832e PubMed DOI

Qi Y., Ingólfsson H. I., Cheng X., Lee J., Marrink S. J., and Im W. (2015) CHARMM–GUI Martini maker for coarse-grained simulations with the Martini force field. J. Chem. Theory Comput. 11, 4486–4494 10.1021/acs.jctc.5b00513 PubMed DOI

Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., and Lindahl E. (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 10.1016/j.softx.2015.06.001 DOI

Humphrey W., Dalke A., and Schulten K. (1996) VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 10.1016/0263-7855(96)00018-5 PubMed DOI

Baker N. A., Sept D., Joseph S., Holst M. J., and McCammon J. A. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 98, 10037–10041 10.1073/pnas.181342398 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Precursors of Viral Proteases as Distinct Drug Targets

. 2021 Oct 02 ; 13 (10) : . [epub] 20211002

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...