Protective hybrid coating containing silver, copper and zinc cations effective against human immunodeficiency virus and other enveloped viruses
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27036553
PubMed Central
PMC4818485
DOI
10.1186/s12866-016-0675-x
PII: 10.1186/s12866-016-0675-x
Knihovny.cz E-zdroje
- Klíčová slova
- Enveloped viruses, HIV, Hybrid coating, Virucidal effect,
- MeSH
- antivirové látky chemie farmakologie MeSH
- HIV infekce MeSH
- HIV-1 účinky léků MeSH
- infekce spojené se zdravotní péčí prevence a kontrola virologie MeSH
- kationty chemie farmakologie MeSH
- kontaminace zdravotnického vybavení prevence a kontrola MeSH
- lidé MeSH
- měď chemie farmakologie MeSH
- stříbro chemie farmakologie MeSH
- viry účinky léků MeSH
- vybavení a zásoby nemocnice virologie MeSH
- zinek chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
- kationty MeSH
- měď MeSH
- stříbro MeSH
- zinek MeSH
BACKGROUND: Healthcare-acquired infections by pathogenic microorganisms including viruses represent significant health concern worldwide. Next to direct transmission from person-to-person also indirect transmission from contaminated surfaces is well documented and important route of infections. Here, we tested antiviral properties of hybrid coating containing silver, copper and zinc cations that was previously shown to be effective against pathogenic bacteria including methicillin-resistant Staphylococcus aureus. Hybrid coatings containing silver, copper and zinc cations were prepared through radical polymerization via sol-gel method and applied on glass slides or into the wells of polymethylmethacrylate plates. A 10 μl droplet of several viruses such as human immunodeficiency virus type 1 (HIV-1), influenza, dengue virus, herpes simplex virus, and coxsackievirus was added to coated and uncoated slides or plates, incubated usually from 5 to 240 min and followed by titer determination of recovered virus. RESULTS: Scanning electron microscopy analysis showed better adhesion of coatings on glass surfaces, which resulted in 99.5-100 % HIV-1 titer reduction (3.1 ± 0.8 log10TCID50, n = 3) already after 20 min of exposure to coatings, than on coated polymethylmethacrylate plates with 75-100 % (1.7 ± 1.1 log10TCID50, n = 3) and 98-100 % (2.3 ± 0.5 log10TCID50, n = 3) HIV-1 titer reduction after 20 and 120 min of exposure, respectively. Slower virucidal kinetics was observed with other enveloped viruses, where 240 min exposure to coated slides lead to 97 % (dengue), 100 % (herpes simplex) and 77 % (influenza) reduction in virus titers. Interestingly, only marginal reduction in viral titer after 240 min of exposure was noticed for non-enveloped coxsackie B3 virus. CONCLUSIONS: Our hybrid coatings showed virucidal activity against HIV and other enveloped viruses thus providing further findings towards development of broad-spectrum antimicrobial coating suitable for surfaces in healthcare settings.
Zobrazit více v PubMed
Klevens RM, Edwards JR, Richards CL, Jr, Horan TC, Gaynes RP, Pollock DA, et al. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 2007;122:160–6. PubMed PMC
Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370:1198–208. doi: 10.1056/NEJMoa1306801. PubMed DOI PMC
Blaser SA, Scheringer M, Macleod M, Hungerbuhler K. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ. 2008;390:396–409. doi: 10.1016/j.scitotenv.2007.10.010. PubMed DOI
Dallas P, Sharma VK, Zboril R. Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci. 2011;166:119–35. doi: 10.1016/j.cis.2011.05.008. PubMed DOI
Jaiswal S, McHale P, Duffy B. Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol-gel surfaces. Colloids Surf B Biointerfaces. 2012;94:170–6. doi: 10.1016/j.colsurfb.2012.01.035. PubMed DOI
Slamborova I, Zajicova V, Karpiskova J, Exnar P, Stibor I. New type of protective hybrid and nanocomposite hybrid coatings containing silver and copper with an excellent antibacterial effect especially against MRSA. Mater Sci Eng C Mater Biol Appl. 2013;33:265–73. doi: 10.1016/j.msec.2012.08.039. PubMed DOI
Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2011;32:5706–16. doi: 10.1016/j.biomaterials.2011.04.040. PubMed DOI
Vazquez M, Paull B. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices. Anal Chim Acta. 2010;668:100–13. doi: 10.1016/j.aca.2010.04.033. PubMed DOI
Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine. 2011;7:22–39. PubMed
Schizas C, Karalekas D. Mechanical characteristics of an Ormocomp((R)) biocompatible hybrid photopolymer. J Mech Behav Biomed Mater. 2011;4:99–106. doi: 10.1016/j.jmbbm.2010.09.010. PubMed DOI
Kozuka H, Almeida RM, Sakka S. Handbook of sol-gel science and technology. 1. New York: Springer; 2005.
Menaa B, Menaa F, Sharts O. Bioencapsulation in silica-based nanoporous sol-gel glasses. 1. Hauppauge: Nova Science Publishers Inc; 2010.
Pagliaro M. Silica-based materials for advanced chemical applications. 1. London: RSC Publishing; 2009.
Ruiz-Hitzky E, Ariga K, Lvov YM. Bioinorganic hybrid nanomaterials, strategies, syntheses characterization and application. 1. Weinheim: Wiley-VCH; 2008.
Wright JD, Sommerdijk NAJM. Handbook of sol-gel materials: Vol. IV Chemistry and applications, 1st edn. London: Taylor and Francis; 2000.
Ciriminna R, Fidalgo A, Pandarus V, Beland F, Ilharco LM, Pagliaro M. The Sol-Gel Route to advanced silica-based materials and recent applications. Chem Rev. 2013;113:6592–620. doi: 10.1021/cr300399c. PubMed DOI
Hench LL, West JK. The sol-gel process. Chem Rev. 1990;90:33–72. doi: 10.1021/cr00099a003. DOI
Bersani D, Lottici PP, Tosini L, Montenero A. Raman study of the polymerization processes in trimethoxysilylpropyl methacrylate (TMSPM) Journal of Raman Spectroscopy. 1999;30:1043–7. doi: 10.1002/(SICI)1097-4555(199911)30:11<1043::AID-JRS480>3.0.CO;2-Q. DOI
Rubio E, Almaral J, Ramirez-Bon R, Castano V, Rodriguez V. Organic-inorganic hybrid coating (poly(methylmethacrylate)/monodisperse silica) Optical Materials. 2005;27:1266–9. doi: 10.1016/j.optmat.2004.11.022. DOI
Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces. 2010;79:5–18. doi: 10.1016/j.colsurfb.2010.03.029. PubMed DOI
Munoz-Bonilla A, Cerrada ML, Fernandez-Garcia M. Polymeric materials with antimicrobial activity: From synthesis to applications. RSC polymer chemistry series no. 10. London: RSC Publishing; 2014.
Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005;3:6. doi: 10.1186/1477-3155-3-6. PubMed DOI PMC
Lara HH, Ixtepan-Turrent L, Garza-Trevino EN, Rodriguez-Padilla C. PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J Nanobiotechnology. 2010;8:15. doi: 10.1186/1477-3155-8-15. PubMed DOI PMC
Sun RW, Chen R, Chung NP, Ho CM, Lin CL, Che CM. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun (Camb) 2005;28(40):5059–61. doi: 10.1039/b510984a. PubMed DOI
Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology. 2010;8:1. doi: 10.1186/1477-3155-8-1. PubMed DOI PMC
Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem. 2009;20:1497–502. doi: 10.1021/bc900215b. PubMed DOI
Hu RL, Li SR, Kong FJ, Hou RJ, Guan XL, Guo F. Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genet Mol Res. 2014;13:7022–8. doi: 10.4238/2014.March.19.2. PubMed DOI
Trefry JC, Wooley DP. Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism. J Biomed Nanotechnol. 2013;9:1624–35. doi: 10.1166/jbn.2013.1659. PubMed DOI
Sun L, Singh AK, Vig K, Pillai SR, Singh SR. Silver nanoparticles inhibit replication of respiratory syncytial virus. J Biomed Nanotechnol. 2008;4:149–58.
Xiang DX, Chen Q, Pang L, Zheng CL. Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J Virol Methods. 2011;178:137–42. doi: 10.1016/j.jviromet.2011.09.003. PubMed DOI
Speshock JL, Murdock RC, Braydich-Stolle LK, Schrand AM, Hussain SM. Interaction of silver nanoparticles with Tacaribe virus. J Nanobiotechnology. 2010;8:19. doi: 10.1186/1477-3155-8-19. PubMed DOI PMC
Lu L, Sun RW, Chen R, Hui CK, Ho CM, Luk JM, et al. Silver nanoparticles inhibit hepatitis B virus replication. Antivir Ther. 2008;13:253–62. PubMed
Borkow G, Gabbay J. Putting copper into action: copper-impregnated products with potent biocidal activities. FASEB J. 2004;18:1728–30. PubMed
Borkow G, Gabbay J. Copper as a biocidal tool. Curr Med Chem. 2005;12:2163–75. doi: 10.2174/0929867054637617. PubMed DOI
Borkow G, Lara HH, Covington CY, Nyamathi A, Gabbay J. Deactivation of human immunodeficiency virus type 1 in medium by copper oxide-containing filters. Antimicrob Agents Chemother. 2008;52:518–25. doi: 10.1128/AAC.00899-07. PubMed DOI PMC
Borkow G, Covington CY, Gautam B, Anzala O, Oyugi J, Juma M, et al. Prevention of human immunodeficiency virus breastmilk transmission with copper oxide: proof-of-concept study. Breastfeed Med. 2011;6:165–70. doi: 10.1089/bfm.2010.0090. PubMed DOI
Borkow G, Sidwell RW, Smee DF, Barnard DL, Morrey JD, Lara-Villegas HH, et al. Neutralizing viruses in suspensions by copper oxide-based filters. Antimicrob Agents Chemother. 2007;51:2605–7. doi: 10.1128/AAC.00125-07. PubMed DOI PMC
Sunada K, Minoshima M, Hashimoto K. Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds. J Hazard Mater. 2012;235–236:265–70. doi: 10.1016/j.jhazmat.2012.07.052. PubMed DOI
Nakano R, Ishiguro H, Yao Y, Kajioka J, Fujishima A, Sunada K, et al. Photocatalytic inactivation of influenza virus by titanium dioxide thin film. Photochem Photobiol Sci. 2012;11:1293–8. doi: 10.1039/c2pp05414k. PubMed DOI
Yamaguchi K, Sugiyama T, Kato S, Kondo Y, Ageyama N, Kanekiyo M, et al. A novel CD4-conjugated ultraviolet light-activated photocatalyst inactivates HIV-1 and SIV efficiently. J Med Virol. 2008;80:1322–31. doi: 10.1002/jmv.21235. PubMed DOI
Lee J, Zoh K, Ko G. Inactivation and UV disinfection of murine norovirus with TiO2 under various environmental conditions. Appl Environ Microbiol. 2008;74:2111–7. doi: 10.1128/AEM.02442-07. PubMed DOI PMC
Haggstrom J, Balyozova D, Klabunde KJ, Marchin G. Virucidal properties of metal oxide nanoparticles and their halogen adducts. Nanoscale. 2010;2:529–34. doi: 10.1039/b9nr00273a. PubMed DOI
Haldar J, An D, de CL A, Chen J, Klibanov AM. Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. Proc Natl Acad Sci U S A. 2006;103:17667–71. doi: 10.1073/pnas.0608803103. PubMed DOI PMC
Tuladhar E, de Koning MC, Fundeanu I, Beumer R, Duizer E. Different virucidal activities of hyperbranched quaternary ammonium coatings on poliovirus and influenza virus. Appl Environ Microbiol. 2012;78:2456–8. doi: 10.1128/AEM.07738-11. PubMed DOI PMC
Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg. 1938;27:493–7.
Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, et al. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother. 2002;46:1896–905. doi: 10.1128/AAC.46.6.1896-1905.2002. PubMed DOI PMC
Wu H, Bock S, Snitko M, Berger T, Weidner T, Holloway S, et al. Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob Agents Chemother. 2015;59:1100–9. doi: 10.1128/AAC.03543-14. PubMed DOI PMC
Matrosovich M, Matrosovich T, Garten W, Klenk HD. New low-viscosity overlay medium for viral plaque assays. Virol J. 2006;3:63. doi: 10.1186/1743-422X-3-63. PubMed DOI PMC
Zajicova V, Exnar P, Stanova I. Properties of hybrid coatings based on 3-trimethoxysilylpropyl methacrylate. Ceramics-Silikaty. 2011;55:221–7.
Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013;87:1181–200. doi: 10.1007/s00204-013-1079-4. PubMed DOI PMC
Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology. 2011;9:30. doi: 10.1186/1477-3155-9-30. PubMed DOI PMC
Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83. doi: 10.1016/j.biotechadv.2008.09.002. PubMed DOI
Dimkpa CO, McLean JE, Britt DW, Anderson AJ. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals. 2013;26:913–24. doi: 10.1007/s10534-013-9667-6. PubMed DOI
Kairyte K, Kadys A, Luksiene Z. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J Photochem Photobiol B. 2013;128:78–84. doi: 10.1016/j.jphotobiol.2013.07.017. PubMed DOI
Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One. 2014;9:e111289. doi: 10.1371/journal.pone.0111289. PubMed DOI PMC
Mantecca P, Moschini E, Bonfanti P, Fascio U, Perelshtein I, Lipovsky A, et al. Toxicity evaluation of a new Zn-Doped CuO nanocomposite with highly effective antibacterial properties. Toxicol Sci. 2015;146(1):16–30. doi: 10.1093/toxsci/kfv067. PubMed DOI
Seil JT, Webster TJ. Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomater. 2011;7:2579–84. doi: 10.1016/j.actbio.2011.03.018. PubMed DOI
Tankhiwale R, Bajpai SK. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids Surf B Biointerfaces. 2012;90:16–20. doi: 10.1016/j.colsurfb.2011.09.031. PubMed DOI
Hulisz D. Efficacy of zinc against common cold viruses: an overview. J Am Pharm Assoc (2003) 2004;44:594–603. doi: 10.1331/1544-3191.44.5.594.Hulisz. PubMed DOI PMC
Korant BD, Kauer JC, Butterworth BE. Zinc ions inhibit replication of rhinoviruses. Nature. 1974;248:588–90. doi: 10.1038/248588a0. PubMed DOI
Prasad AS, Fitzgerald JT, Bao B, Beck FW, Chandrasekar PH. Duration of symptoms and plasma cytokine levels in patients with the common cold treated with zinc acetate. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2000;133:245–52. doi: 10.7326/0003-4819-133-4-200008150-00006. PubMed DOI
Suara RO, Crowe JE., Jr Effect of zinc salts on respiratory syncytial virus replication. Antimicrob Agents Chemother. 2004;48:783–90. doi: 10.1128/AAC.48.3.783-790.2004. PubMed DOI PMC
Katz E, Margalith E. Inhibition of vaccinia virus maturation by zinc-chloride. Antimicrob Agents Chemother. 1981;19:213–7. doi: 10.1128/AAC.19.2.213. PubMed DOI PMC
Arens M, Travis S. Zinc salts inactivate clinical isolates of herpes simplex virus in vitro. J Clin Microbiol. 2000;38:1758–62. PubMed PMC
Haraguchi Y, Sakurai H, Hussain S, Anner BM, Hoshino H. Inhibition of HIV-1 infection by zinc group metal compounds. Antiviral Res. 1999;43:123–33. doi: 10.1016/S0166-3542(99)00040-6. PubMed DOI
Kim JH, Cho H, Ryu SE, Choi MU. Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys. 2000;382:72–80. doi: 10.1006/abbi.2000.1996. PubMed DOI
Zhang ZY, Reardon IM, Hui JO, O'Connell KL, Poorman RA, Tomasselli AG, et al. Zinc inhibition of renin and the protease from human immunodeficiency virus type 1. Biochemistry. 1991;30:8717–21. doi: 10.1021/bi00100a001. PubMed DOI
Liang JJ, Wei JC, Lee YL, Hsu SH, Lin JJ, Lin YL. Surfactant-modified nanoclay exhibits an antiviral activity with high potency and broad spectrum. J Virol. 2014;88:4218–28. doi: 10.1128/JVI.03256-13. PubMed DOI PMC
Murugan K, Aruna P, Panneerselvam C, Madhiyazhagan P, Paulpandi M, Subramaniam J, et al. Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro), and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol Res 2015 Oct 14 [Epub ahead of print]. PubMed
Hidari KI, Suzuki T. Dengue virus receptor. Trop Med Health. 2011;39:37–43. doi: 10.2149/tmh.2011-S03. PubMed DOI PMC
Carro AC, Damonte EB. Requirement of cholesterol in the viral envelope for dengue virus infection. Virus Res. 2013;174:78–87. doi: 10.1016/j.virusres.2013.03.005. PubMed DOI
Reske A, Pollara G, Krummenacher C, Chain BM, Katz DR. Understanding HSV-1 entry glycoproteins. Rev Med Virol. 2007;17:205–15. doi: 10.1002/rmv.531. PubMed DOI PMC
Heim J, Felder E, Tahir MN, Kaltbeitzel A, Heinrich UR, Brochhausen C, et al. Genotoxic effects of zinc oxide nanoparticles. Nanoscale. 2015;7(19):8931–8. doi: 10.1039/C5NR01167A. PubMed DOI
Papp I, Sieben C, Ludwig K, Roskamp M, Bottcher C, Schlecht S, et al. Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. Small. 2010;6:2900–6. doi: 10.1002/smll.201001349. PubMed DOI
Helquat dyes targeting G-quadruplexes as a new class of anti-HIV-1 inhibitors
Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus
Inhibition of the precursor and mature forms of HIV-1 protease as a tool for drug evaluation