Multi-sulfonated ligands on gold nanoparticles as virucidal antiviral for Dengue virus
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32494059
PubMed Central
PMC7271158
DOI
10.1038/s41598-020-65892-3
PII: 10.1038/s41598-020-65892-3
Knihovny.cz E-resources
- MeSH
- Antiviral Agents chemistry pharmacology MeSH
- Cell Line MeSH
- Hep G2 Cells MeSH
- Chlorocebus aethiops MeSH
- Dengue drug therapy MeSH
- Hepatocytes virology MeSH
- Metal Nanoparticles chemistry MeSH
- Humans MeSH
- Ligands MeSH
- Cell Line, Tumor MeSH
- Molecular Docking Simulation MeSH
- Vero Cells MeSH
- Dengue Virus drug effects MeSH
- Gold chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antiviral Agents MeSH
- Ligands MeSH
- Gold MeSH
Dengue virus (DENV) causes 390 million infections per year. Infections can be asymptomatic or range from mild fever to severe haemorrhagic fever and shock syndrome. Currently, no effective antivirals or safe universal vaccine is available. In the present work we tested different gold nanoparticles (AuNP) coated with ligands ω-terminated with sugars bearing multiple sulfonate groups. We aimed to identify compounds with antiviral properties due to irreversible (virucidal) rather than reversible (virustatic) inhibition. The ligands varied in length, in number of sulfonated groups as well as their spatial orientation induced by the sugar head groups. We identified two candidates, a glucose- and a lactose-based ligand showing a low EC50 (effective concentration that inhibit 50% of the viral activity) for DENV-2 inhibition, moderate toxicity and a virucidal effect in hepatocytes with titre reduction of Median Tissue Culture Infectious Dose log10TCID50 2.5 and 3.1. Molecular docking simulations complemented the experimental findings suggesting a molecular rationale behind the binding between sulfonated head groups and DENV-2 envelope protein.
Department of Chemistry University of Bari Aldo Moro Bari Italy
Department of Pharmacy Pharmaceutical Sciences University of Bari Aldo Moro Bari Italy
Institute for Physical and Chemical Processes CNR SS Bari Bari Italy
Institute of Materials Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
Interfaculty Bioengineering Institute Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
Istituto di Cristallografia Consiglio Nazionale delle Ricerche Bari Italy
Laboratory for nanotechnology IRCCS Istituto Tumori Giovanni Paolo 2 Bari Italy
See more in PubMed
Gould E, Solomon T. Pathogenic flaviviruses. Lancet. 2008;371:500–509. PubMed
Bhatt S, et al. The global distribution and burden of dengue. Nature. 2013;496:504–507. PubMed PMC
Brady OJ, et al. Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Negl. Trop. Dis. 2012;6:e1760. PubMed PMC
Lim SP. Dengue drug discovery: Progress, challenges and outlook. Antiviral Res. 2019;163:156–178. PubMed
Stanaway JD, et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect. Dis. 2016;16:712–723. PubMed PMC
Behnam MA, Graf D, Bartenschlager R, Zlotos DP, Klein CD. Discovery of Nanomolar Dengue and West Nile Virus Protease Inhibitors Containing a 4-Benzyloxyphenylglycine Residue. J Med Chem. 2015;58:9354–9370. PubMed
Yin Z, et al. Peptide inhibitors of Dengue virus NS3 protease. Part 1: Warhead. Bioorg Med Chem Lett. 2006;16:36–39. PubMed
Pambudi S, et al. A small compound targeting the interaction between nonstructural proteins 2B and 3 inhibits dengue virus replication. Biochem Biophys Res Commun. 2013;440:393–398. PubMed
Chatelain G, et al. In search of flavivirus inhibitors: evaluation of different tritylated nucleoside analogues. Eur J Med Chem. 2013;65:249–255. PubMed
Saudi M, et al. In search of Flavivirus inhibitors part 2: tritylated, diphenylmethylated and other alkylated nucleoside analogues. Eur J Med Chem. 2014;76:98–109. PubMed
Yin Z, et al. N-sulfonylanthranilic acid derivatives as allosteric inhibitors of dengue viral RNA-dependent RNA polymerase. J Med Chem. 2009;52:7934–7937. PubMed
Yin Z, et al. An adenosine nucleoside inhibitor of dengue virus. Proc Natl Acad Sci USA. 2009;106:20435–20439. PubMed PMC
Nguyen NM, et al. A randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult dengue patients. J Infect Dis. 2013;207:1442–1450. PubMed PMC
Malet H, et al. The flavivirus polymerase as a target for drug discovery. Antivir. Res. 2008;80:23–35. PubMed
Yap TL, et al. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol. 2007;81:4753–4765. PubMed PMC
Tichy M, et al. Synthesis and biological activity of benzo-fused 7-deazaadenosine analogues. 5- and 6-substituted 4-amino- or 4-alkylpyrimido[4,5-b]indole ribonucleosides. Bioorg Med Chem. 2013;21:5362–5372. PubMed
Niyomrattanakit P, et al. Inhibition of dengue virus polymerase by blocking of the RNA tunnel. J Virol. 2010;84:5678–5686. PubMed PMC
Lim SP, et al. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling. PLOS Pathog. 2016;12:e1005737. PubMed PMC
Abdullah, A. A. et al. Discovery of Dengue Virus Inhibitors. Curr. Med. Chem. 26 (2018). PubMed
Wang QY, et al. A small-molecule dengue virus entry inhibitor. Antimicrob Agents Chemother. 2009;53:1823–1831. PubMed PMC
Schmidt AG, Yang PL, Harrison SC. Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLoS Pathog. 2010;6:e1000851. PubMed PMC
Rai M, et al. Metal nanoparticles: The protective nanoshield against virus infection. Crit. Rev. Microbiol. 2016;42:46–56. PubMed
Ooi ET, Ganesananthan S, Anil R, Kwok FY, Sinniah M. Gastrointestinal manifestations of dengue infection in adults. Med. J. Malaysia. 2008;63:401–5. PubMed
Hodek J, et al. Protective hybrid coating containing silver, copper and zinc cations effective against human immunodeficiency virus and other enveloped viruses. BMC Microbiol. 2016;16(Suppl 1):56. PubMed PMC
Sujitha V, et al. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. 2015;114:3315–3325. PubMed
Murugan K, et al. Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae) Parasitol Res. 2015;114:4349–4361. PubMed
Cagno V, et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat. Mater. 2018;17:195–203. PubMed
Dey P, et al. Multivalent Flexible Nanogels Exhibit Broad-Spectrum Antiviral Activity by Blocking Virus Entry. ACS Nano. 2018;12:6429–6442. PubMed
Green S, Rothman A. Immunopathological mechanisms in dengue and dengue hemorrhagic fever. Curr. Opin. Infect. Dis. 2006;19:429–436. PubMed
Hilgard P. Heparan Sulfate Proteoglycans Initiate Dengue Virus Infection of Hepatocytes. Hepatology. 2000;32:1069–1077. PubMed
Jadav SS, et al. Design, synthesis, optimization and antiviral activity of a class of hybrid dengue virus E protein inhibitors. Bioorg. Med. Chem. Lett. 2015;25:1747–1752. PubMed
Dighe SN, et al. Recent update on anti-dengue drug discovery. Eur. J. Med. Chem. 2019;176:431–455. PubMed
Modis Y, Ogata S, Clements D, Harrison SC. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. 2003;100:6986–6991. PubMed PMC
Smith HA, Doughty G, Gorin G. Mercaptan—Disulfide Interchange Reactions. 1 III. Reaction of Cysteine with 4,4’-Dithiobis(benzenesulfonic acid) J. Org. Chem. 1964;29:1484–1488.
Zheng N, Fan J, Stucky GD. One-Step One-Phase Synthesis of Monodisperse Noble-Metallic Nanoparticles and Their Colloidal Crystals. J. Am. Chem. Soc. 2006;128:6550–6551. PubMed
Verma A, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 2008;7:588–595. PubMed PMC
Kuna JJ, et al. The effect of nanometre-scale structure on interfacial energy. Nat. Mater. 2009;8:837–842. PubMed
Van Lehn RC, et al. Effect of particle diameter and surface composition on the spontaneous fusion of monolayer-protected gold nanoparticles with lipid bilayers. Nano Lett. 2013;13:4060–7. PubMed PMC
Ni Y, et al. Hepatitis B and D Viruses Exploit Sodium Taurocholate Co-transporting Polypeptide for Species-Specific Entry into Hepatocytes. Gastroenterology. 2014;146:1070–1083.e6. PubMed
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
Reed LJJ, Muench H. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 1938;27:493–497.
Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen. J. Mol. Biol. 1997;267:727–748. PubMed
Feher M, Williams CI. Effect of Input Differences on the Results of Docking Calculations. J. Chem. Inf. Model. 2009;49:1704–1714. PubMed