Triterpenoid-PEG Ribbons Targeting Selectivity in Pharmacological Effects

. 2021 Aug 03 ; 9 (8) : . [epub] 20210803

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34440155

Grantová podpora
FV30300 Ministerstvo Průmyslu a Obchodu
CZ.02.1.01/0.0/0.0/16_019/0000738 European Regional Development Fund

Odkazy

PubMed 34440155
PubMed Central PMC8391127
DOI 10.3390/biomedicines9080951
PII: biomedicines9080951
Knihovny.cz E-zdroje

(1) Background: To compare the effect of selected triterpenoids with their structurally resembling derivatives, designing of the molecular ribbons was targeted to develop compounds with selectivity in their pharmacological effects. (2) Methods: In the synthetic procedures, Huisgen 1,3-dipolar cycloaddition was applied as a key synthetic step for introducing a 1,2,3-triazole ring as a part of a junction unit in the molecular ribbons. (3) Results: The antimicrobial activity, antiviral activity, and cytotoxicity of the prepared compounds were studied. Most of the molecular ribbons showed antimicrobial activity, especially on Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis, with a 50-90% inhibition effect (c = 25 µg·mL-1). No target compound was effective against HSV-1, but 8a displayed activity against HIV-1 (EC50 = 50.6 ± 7.8 µM). Cytotoxicity was tested on several cancer cell lines, and 6d showed cytotoxicity in the malignant melanoma cancer cell line (G-361; IC50 = 20.0 ± 0.6 µM). Physicochemical characteristics of the prepared compounds were investigated, namely a formation of supramolecular gels and a self-assembly potential in general, with positive results achieved with several target compounds. (4) Conclusions: Several compounds of a series of triterpenoid molecular ribbons showed better pharmacological profiles than the parent compounds and displayed certain selectivity in their effects.

Zobrazit více v PubMed

Bag B.G., Majumdar R. Self-assembly of renewable nano-sized triterpenoids. Chem. Rec. 2017;17:841–873. doi: 10.1002/tcr.201600123. PubMed DOI

Pollier J., Goossens A. Oleanolic acid. Phytochemistry. 2012;77:10–15. doi: 10.1016/j.phytochem.2011.12.022. PubMed DOI

Jaeger S., Trojan H., Kopp T., Laszczyk M.N., Scheffler A. Pentacyclic triterpene distribution in various plants—Rich sources for a new group of multi-potent plant extracts. Molecules. 2009;14:2016–2031. doi: 10.3390/molecules14062016. PubMed DOI PMC

Kashiwada Y., Wang H.-K., Nagao T., Kitanaka S., Yasuda I., Fujioka T., Yamagishi T., Cosentino L.M., Kozuka M., Okabe H., et al. Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J. Nat. Prod. 1998;61:1090–1095. doi: 10.1021/np9800710. PubMed DOI

Mengoni F., Lichtner M., Battinelli L., Marzi M., Mastroianni C.M., Vullo V., Mazzanti G. In vitro anti-HIV activity of oleanolic acid on infected human mononuclear cells. Planta Med. 2002;68:111–114. doi: 10.1055/s-2002-20256. PubMed DOI

Mukherjee H., Ojha D., Bag P., Chandel H.S., Bhattacharyya S., Chatterjee T.K., Mukherjee P.K., Chakraborti S., Chattopadhyay D. Anti-herpes virus activities of Achyranthes aspera: An Indian ethnomedicine, and its triterpene acid. Microbiol. Res. 2013;168:238–244. doi: 10.1016/j.micres.2012.11.002. PubMed DOI

Woldemichael G.M., Singh M.P., Maiese W.M., Timmermann B.N. Constituents of antibacterial extract of Caesalpinia paraguariensis Burk. Z. Naturforsch. C J. Biosci. 2003;58:70–75. doi: 10.1515/znc-2003-1-213. PubMed DOI

Horiuchi K., Shiota S., Hatano T., Yoshida T., Kuroda T., Tsuchiya T. Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE) Biol. Pharm. Bull. 2007;30:1147–1149. doi: 10.1248/bpb.30.1147. PubMed DOI

Szakiel A., Ruszkowski D., Grudniak A., Kurek A., Wolska K.I., Doligalska M., Janiszowska W. Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis) Planta Med. 2008;74:1709–1715. doi: 10.1055/s-0028-1088315. PubMed DOI

Bamuamba K., Gammon D.W., Meyers P., Dijoux-Franca M.-G., Scott G. Anti-mycobacterial activity of five plant species used as traditional medicines in the Western Cape Province (South Africa) J. Ethnopharmacol. 2008;117:385–390. doi: 10.1016/j.jep.2008.02.007. PubMed DOI

Kuete V., Wabo G.F., Ngameni B., Mbaveng A.T., Metuno R., Etoa F.-X., Ngadjui B.T., Beng V.P., Meyer J.J.M., Lall N. Antimicrobial activity of the methanolic extract, fractions and compounds from the stem bark of Irvingia gabonensis (Ixonanthaceae) J. Ethnopharmacol. 2007;114:54–60. doi: 10.1016/j.jep.2007.07.025. PubMed DOI

Wu D., Zhang Q., Yu Y., Zhang Y., Zhang M., Liu Q., Zhang E., Li S., Song G. Oleanolic acid, a novel endothelin A receptor antagonist, alleviated high glucose-induced cardiomyocytes injury. Am. J. Chin. Med. 2018;46:1187–1201. doi: 10.1142/S0192415X18500623. PubMed DOI

Kurukulasuriya R., Link J.T., Madar D.J., Pei Z., Richards S.J., Rohde J.J., Souers A.J., Szczepankiewicz B.G. Potential drug targets and progress towards pharmacologic inhibition of hepatic glucose production. Curr. Med. Chem. 2003;10:123–153. doi: 10.2174/0929867033368556. PubMed DOI

Klaman L.D., Boss O., Peroni O.D., Kim J.K., Martino J.L., Zabolotny J.M., Moghal N., Lubkin M., Kim Y.-B., Sharpe A.H., et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. 2000;20:5479–5489. doi: 10.1128/MCB.20.15.5479-5489.2000. PubMed DOI PMC

Teodoro T., Zhang L., Alexander T., Yue J., Vranic M., Volchuk A. Oleanolic acid enhances insulin secretion in pancreatic β-cells. FEBS Lett. 2008;582:1375–1380. doi: 10.1016/j.febslet.2008.03.026. PubMed DOI

Singh G.B., Singh S., Bani S., Gupta B.D., Banerjee S.K. Anti-inflammatory activity of oleanolic acid in rats and mice. J. Pharm. Pharmacol. 1992;44:456–458. doi: 10.1111/j.2042-7158.1992.tb03646.x. PubMed DOI

Akihisa T., Kamo S., Uchiyama T., Akazawa H., Banno N., Taguchi Y., Yasukawa K. Cytotoxic activity of Perilla frutescens var. japonica leaf extract is due to high concentrations of oleanolic and ursolic acids. J. Nat. Med. 2006;60:331–333. doi: 10.1007/s11418-006-0015-9. DOI

Ma C.-M., Wu X.-H., Masao H., Wang X.-J., Kano Y. HCV protease inhibitory, cytotoxic and apoptosis-inducing effects of oleanolic acid derivatives. J. Pharm. Pharm. Sci. 2009;12:243–248. doi: 10.18433/J3DW2D. PubMed DOI

Wang H., Wang Q., Xiao S.-L., Yu F., Ye M., Zheng Y.-X., Zhao C.-K., Sun D.-A., Zhang L.-H., Zhou D.-M. Elucidation of the pharmacophore of echinocystic acid, a new lead for blocking HCV entry. Eur. J. Med. Chem. 2013;64:160–168. doi: 10.1016/j.ejmech.2013.03.041. PubMed DOI

Kong L., Li S., Liao Q., Zhang Y., Sun R., Zhu X., Zhang Q., Wang J., Wu X., Fang X., et al. Oleanolic acid and ursolic acid: Novel hepatitis C virus antivirals that inhibit NS5B activity. Antivir. Res. 2013;98:44–53. doi: 10.1016/j.antiviral.2013.02.003. PubMed DOI

Barton D.H.R., Brooks C.J.W. Morolic acid, a triterpenoid sapogenin. J. Am. Chem. Soc. 1950;72:3314. doi: 10.1021/ja01163a543. DOI

Hostettmann-Kaldas M., Nakanishi K. Moronic acid, a simple triterpenoid keto acid with antimicrobial activity isolated from Ozoroa mucronata. Planta Med. 1979;37:358–360. doi: 10.1055/s-0028-1097349. PubMed DOI

Hamburger M., Riese U., Graf H., Melzig M.F., Ciesielski S., Baumann D., Dittmann K., Wegner C. Constituents in evening primrose oil with radical scavenging, cyclooxygenase, and neutrophil elastase inhibitory activities. J. Agric. Food Chem. 2002;50:5533–5538. doi: 10.1021/jf025581l. PubMed DOI

Paduch R., Kandefer-Szerzen M., Trytek M., Fiedurek J. Terpenes: Substances useful in human healthcare. Arch. Immunol. Ther. Exp. 2007;55:315–327. doi: 10.1007/s00005-007-0039-1. PubMed DOI

Gehrke I.T.S., Neto A.T., Pedroso M., Mostardeiro C.P., Da Cruz I.B.M., Silva U.F., Ilha V., Dalcol I.I., Morel A.F. Antimicrobial activity of Schinus lentiscifolius (Anacardiaceae) J. Ethnopharmacol. 2013;148:486–491. doi: 10.1016/j.jep.2013.04.043. PubMed DOI

Lopez-Martinez S., Navarrete-Vazquez G., Estrada-Soto S., Leon-Rivera I., Rios M.Y. Chemical constituents of the hemiparasitic plant Phoradendron brachystachyum DC Nutt (Viscaceae) Nat. Prod. Res. 2013;27:130–136. doi: 10.1080/14786419.2012.662646. PubMed DOI

Ramirez-Espinosa J.J., Rios M.Y., Lopez-Martinez S., Lopez-Vallejo F., Medina-Franco J.L., Paoli P., Camici G., Navarrete-Vazquez G., Ortiz-Andrade R., Estrada-Soto S. Antidiabetic activity of some pentacyclic acid triterpenoids, role of PTP-1B: In vitro, in silico, and in vivo approaches. Eur. J. Med. Chem. 2011;46:2243–2251. doi: 10.1016/j.ejmech.2011.03.005. PubMed DOI

Ramirez-Espinosa J.J., Garcia-Jimenez S., Rios M.Y., Medina-Franco J.L., Lopez-Vallejo F., Webster S.P., Binnie M., Ibarra-Barajas M., Ortiz-Andrade R., Estrada-Soto S. Antihyperglycemic and sub-chronic antidiabetic actions of morolic and moronic acids, in vitro and in silico inhibition of 11β-HSD 1. Phytomedicine. 2013;20:571–576. doi: 10.1016/j.phymed.2013.01.013. PubMed DOI

Giner-Larza E.M., Manez S., Giner R.M., Recio M.C., Prieto J.M., Cerda-Nicolas M., Rios J.L. Anti-inflammatory triterpenes from Pistacia terebinthus Galls. Planta Med. 2002;68:311–315. doi: 10.1055/s-2002-26749. PubMed DOI

Flekhter O.B., Medvedeva N.I., Tolstikov G.A., Galin F.Z., Yunusov M.S., Mai H.N.T., Tien L.V., Savinova I.V., Boreko E.I., Titov L.P., et al. Synthesis of olean-18(19)-ene derivatives from botulin. Russ. J. Bioorg. Chem. 2009;35:233–239. doi: 10.1134/S1068162009020125. PubMed DOI

Khusnutdinova E.F., Medvedeva N.I., Kazakov D.V., Kukovinets O.S., Lobov A.N., Suponitsky K.Y., Kazakova O.B. An efficient synthesis of moronic and heterobetulonic acids from allobetulin. Tetrahedron Lett. 2016;57:148–151. doi: 10.1016/j.tetlet.2015.11.086. DOI

Chung P.Y. Novel targets of pentacyclic triterpenoids in Staphylococcus aureus: A systematic review. Phytomedicine. 2020;73:152933. doi: 10.1016/j.phymed.2019.152933. PubMed DOI

Knight G.M., Glover R.E., McQuaid C.F., Olaru I.D., Gallandat K., Leclerc Q.J., Fuller N.M., Willcocks S.J., Hasan R., van Kleef E., et al. Antimicrobial resistance and COVID-19: Intersections and implications. eLife. 2021;10:e64139. doi: 10.7554/eLife.64139. PubMed DOI PMC

Ferrando M.L., Coghe F., Scano A., Carta K.G., Orru G. Co-infection of Streptococcus pneumoniae in respiratory infections caused by SARS-CoV-2. Biointerface Res. Appl. Chem. 2021;11:12170–12177.

Furtado N.A.J.C., Pirson L., Edelberg H., Miranda L.M., Loira-Pastoriza C., Preat V., Larondelle Y., André C.M. Pentacyclic triterpene bioavailability: An overview of in vitro and in vivo studies. Molecules. 2017;22:400. doi: 10.3390/molecules22030400. PubMed DOI PMC

Le Devedec F., Fuentealba D., Strandman S., Bohne C., Zhu X.X. Aggregation behavior of pegylated bile acid derivatives. Langmuir. 2012;28:13431–13440. doi: 10.1021/la303218q. PubMed DOI

Castillo P.M., de la Mata M., Casula M.F., Sanchez-Alcazar J.A., Zaderenko A.P. PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system. Beilstein J. Nanotechnol. 2014;5:1312–1319. doi: 10.3762/bjnano.5.144. PubMed DOI PMC

Zacchigna M., Cateni F., Drioli S., Procida G., Altieri T. PEG–ursolic acid conjugate: Synthesis and in vitro release studies. Sci. Pharm. 2014;82:411–422. doi: 10.3797/scipharm.1309-17. PubMed DOI PMC

Medina-O’Donnell M., Rivas F., Reyes-Zurita F.J., Martinez A., Martin-Fonseca S., Garcia-Granados A., Ferrer-Martin R.M., Lupianez J.A., Parra A. Semi-synthesis and antiproliferative evaluation of PEGylated pentacyclic triterpenes. Eur. J. Med. Chem. 2016;118:64–78. doi: 10.1016/j.ejmech.2016.04.016. PubMed DOI

Pasut G., Veronese F.M. State of the art in PEGylation: The great versatility achieved after forty years of research. J. Control. Release. 2012;161:461–472. doi: 10.1016/j.jconrel.2011.10.037. PubMed DOI

Kolate A., Baradia D., Patil S., Vhora I., Kore G., Misra A. PEG—A versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release. 2014;192:67–81. doi: 10.1016/j.jconrel.2014.06.046. PubMed DOI

Bildziukevich U., Vida N., Rárová L., Kolář M., Šaman D., Havlíček L., Drašar P., Wimmer Z. Polyamine derivatives of betulinic acid and β-sitosterol: A comparative investigation. Steroids. 2015;100:27–35. doi: 10.1016/j.steroids.2015.04.005. PubMed DOI

Bildziukevich U., Malík M., Özdemir Z., Rárová L., Janovská L., Šlouf M., Šaman D., Šarek J., Nonappa N., Wimmer Z. Spermine amides of selected triterpenoid acids: Dynamic supramolecular system formation influences the cytotoxicity of the drugs. J. Mater. Chem. B. 2020;8:484–491. doi: 10.1039/C9TB01957J. PubMed DOI

Humpolíčková J., Weber J., Stárková J., Mašínová E., Günterová J., Flaisigová I., Konvalinka J., Majerová T. Inhibition of the precursor and mature forms of HIV-1 protease as a tool for drug evaluation. Sci. Rep. 2018;8:10438. doi: 10.1038/s41598-018-28638-w. PubMed DOI PMC

Konč J., Tichý M., Pohl R., Hodek J., Džubák P., Hajdúch M., Hocek M. Sugar modified pyrimido[4,5-b]indole nucleosides: Synthesis and antiviral activity. Med. Chem. Commun. 2017;8:1856–1862. doi: 10.1039/C7MD00319F. PubMed DOI PMC

Özdemir Z., Rybková M., Vlk M., Šaman D., Rárová L., Wimmer Z. Synthesis and pharmacological effects of diosgenin-betulinic acid conjugates. Molecules. 2020;25:3546. doi: 10.3390/molecules25153546. PubMed DOI PMC

Özdemir Z., Šaman D., Bertula K., Lahtinen M., Bednárová L., Pazderková M., Rárová L., Wimmer Z. Rapid self-healing and thixotropic organogelation of amphiphilic oleanolic acid–spermine conjugates. Langmuir. 2021;37:2693–2706. doi: 10.1021/acs.langmuir.0c03335. PubMed DOI

Ha W., Zhao X.-B., Zhao W.-H., Tang J.-J., Shi Y.P. A colon-targeted podophyllotoxin nanoprodrug: Synthesis, characterization, and supramolecular hydrogel formation for the drug combination. J. Mater. Chem. B. 2021;9:3200–3209. doi: 10.1039/D0TB02719G. PubMed DOI

Keum C., Hong J., Kim D., Lee S.-Y., Kim H. Lysozyme-instructed self-assembly of amino-acid-functionalized perylene diimide for multidrug-resistant cancer cells. ACS Appl. Mater. Interfaces. 2021;13:14866–14874. doi: 10.1021/acsami.0c20050. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace