Triterpenoid-PEG Ribbons Targeting Selectivity in Pharmacological Effects
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FV30300
Ministerstvo Průmyslu a Obchodu
CZ.02.1.01/0.0/0.0/16_019/0000738
European Regional Development Fund
PubMed
34440155
PubMed Central
PMC8391127
DOI
10.3390/biomedicines9080951
PII: biomedicines9080951
Knihovny.cz E-zdroje
- Klíčová slova
- Huisgen 1,3-dipolar cycloaddition, amide bond, anti-HIV activity, antimicrobial activity, cytotoxicity, molecular ribbon, multifunctional PEG3 derivative, supramolecular self-assembly, triterpenoid,
- Publikační typ
- časopisecké články MeSH
(1) Background: To compare the effect of selected triterpenoids with their structurally resembling derivatives, designing of the molecular ribbons was targeted to develop compounds with selectivity in their pharmacological effects. (2) Methods: In the synthetic procedures, Huisgen 1,3-dipolar cycloaddition was applied as a key synthetic step for introducing a 1,2,3-triazole ring as a part of a junction unit in the molecular ribbons. (3) Results: The antimicrobial activity, antiviral activity, and cytotoxicity of the prepared compounds were studied. Most of the molecular ribbons showed antimicrobial activity, especially on Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis, with a 50-90% inhibition effect (c = 25 µg·mL-1). No target compound was effective against HSV-1, but 8a displayed activity against HIV-1 (EC50 = 50.6 ± 7.8 µM). Cytotoxicity was tested on several cancer cell lines, and 6d showed cytotoxicity in the malignant melanoma cancer cell line (G-361; IC50 = 20.0 ± 0.6 µM). Physicochemical characteristics of the prepared compounds were investigated, namely a formation of supramolecular gels and a self-assembly potential in general, with positive results achieved with several target compounds. (4) Conclusions: Several compounds of a series of triterpenoid molecular ribbons showed better pharmacological profiles than the parent compounds and displayed certain selectivity in their effects.
Zobrazit více v PubMed
Bag B.G., Majumdar R. Self-assembly of renewable nano-sized triterpenoids. Chem. Rec. 2017;17:841–873. doi: 10.1002/tcr.201600123. PubMed DOI
Pollier J., Goossens A. Oleanolic acid. Phytochemistry. 2012;77:10–15. doi: 10.1016/j.phytochem.2011.12.022. PubMed DOI
Jaeger S., Trojan H., Kopp T., Laszczyk M.N., Scheffler A. Pentacyclic triterpene distribution in various plants—Rich sources for a new group of multi-potent plant extracts. Molecules. 2009;14:2016–2031. doi: 10.3390/molecules14062016. PubMed DOI PMC
Kashiwada Y., Wang H.-K., Nagao T., Kitanaka S., Yasuda I., Fujioka T., Yamagishi T., Cosentino L.M., Kozuka M., Okabe H., et al. Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J. Nat. Prod. 1998;61:1090–1095. doi: 10.1021/np9800710. PubMed DOI
Mengoni F., Lichtner M., Battinelli L., Marzi M., Mastroianni C.M., Vullo V., Mazzanti G. In vitro anti-HIV activity of oleanolic acid on infected human mononuclear cells. Planta Med. 2002;68:111–114. doi: 10.1055/s-2002-20256. PubMed DOI
Mukherjee H., Ojha D., Bag P., Chandel H.S., Bhattacharyya S., Chatterjee T.K., Mukherjee P.K., Chakraborti S., Chattopadhyay D. Anti-herpes virus activities of Achyranthes aspera: An Indian ethnomedicine, and its triterpene acid. Microbiol. Res. 2013;168:238–244. doi: 10.1016/j.micres.2012.11.002. PubMed DOI
Woldemichael G.M., Singh M.P., Maiese W.M., Timmermann B.N. Constituents of antibacterial extract of Caesalpinia paraguariensis Burk. Z. Naturforsch. C J. Biosci. 2003;58:70–75. doi: 10.1515/znc-2003-1-213. PubMed DOI
Horiuchi K., Shiota S., Hatano T., Yoshida T., Kuroda T., Tsuchiya T. Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE) Biol. Pharm. Bull. 2007;30:1147–1149. doi: 10.1248/bpb.30.1147. PubMed DOI
Szakiel A., Ruszkowski D., Grudniak A., Kurek A., Wolska K.I., Doligalska M., Janiszowska W. Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis) Planta Med. 2008;74:1709–1715. doi: 10.1055/s-0028-1088315. PubMed DOI
Bamuamba K., Gammon D.W., Meyers P., Dijoux-Franca M.-G., Scott G. Anti-mycobacterial activity of five plant species used as traditional medicines in the Western Cape Province (South Africa) J. Ethnopharmacol. 2008;117:385–390. doi: 10.1016/j.jep.2008.02.007. PubMed DOI
Kuete V., Wabo G.F., Ngameni B., Mbaveng A.T., Metuno R., Etoa F.-X., Ngadjui B.T., Beng V.P., Meyer J.J.M., Lall N. Antimicrobial activity of the methanolic extract, fractions and compounds from the stem bark of Irvingia gabonensis (Ixonanthaceae) J. Ethnopharmacol. 2007;114:54–60. doi: 10.1016/j.jep.2007.07.025. PubMed DOI
Wu D., Zhang Q., Yu Y., Zhang Y., Zhang M., Liu Q., Zhang E., Li S., Song G. Oleanolic acid, a novel endothelin A receptor antagonist, alleviated high glucose-induced cardiomyocytes injury. Am. J. Chin. Med. 2018;46:1187–1201. doi: 10.1142/S0192415X18500623. PubMed DOI
Kurukulasuriya R., Link J.T., Madar D.J., Pei Z., Richards S.J., Rohde J.J., Souers A.J., Szczepankiewicz B.G. Potential drug targets and progress towards pharmacologic inhibition of hepatic glucose production. Curr. Med. Chem. 2003;10:123–153. doi: 10.2174/0929867033368556. PubMed DOI
Klaman L.D., Boss O., Peroni O.D., Kim J.K., Martino J.L., Zabolotny J.M., Moghal N., Lubkin M., Kim Y.-B., Sharpe A.H., et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. 2000;20:5479–5489. doi: 10.1128/MCB.20.15.5479-5489.2000. PubMed DOI PMC
Teodoro T., Zhang L., Alexander T., Yue J., Vranic M., Volchuk A. Oleanolic acid enhances insulin secretion in pancreatic β-cells. FEBS Lett. 2008;582:1375–1380. doi: 10.1016/j.febslet.2008.03.026. PubMed DOI
Singh G.B., Singh S., Bani S., Gupta B.D., Banerjee S.K. Anti-inflammatory activity of oleanolic acid in rats and mice. J. Pharm. Pharmacol. 1992;44:456–458. doi: 10.1111/j.2042-7158.1992.tb03646.x. PubMed DOI
Akihisa T., Kamo S., Uchiyama T., Akazawa H., Banno N., Taguchi Y., Yasukawa K. Cytotoxic activity of Perilla frutescens var. japonica leaf extract is due to high concentrations of oleanolic and ursolic acids. J. Nat. Med. 2006;60:331–333. doi: 10.1007/s11418-006-0015-9. DOI
Ma C.-M., Wu X.-H., Masao H., Wang X.-J., Kano Y. HCV protease inhibitory, cytotoxic and apoptosis-inducing effects of oleanolic acid derivatives. J. Pharm. Pharm. Sci. 2009;12:243–248. doi: 10.18433/J3DW2D. PubMed DOI
Wang H., Wang Q., Xiao S.-L., Yu F., Ye M., Zheng Y.-X., Zhao C.-K., Sun D.-A., Zhang L.-H., Zhou D.-M. Elucidation of the pharmacophore of echinocystic acid, a new lead for blocking HCV entry. Eur. J. Med. Chem. 2013;64:160–168. doi: 10.1016/j.ejmech.2013.03.041. PubMed DOI
Kong L., Li S., Liao Q., Zhang Y., Sun R., Zhu X., Zhang Q., Wang J., Wu X., Fang X., et al. Oleanolic acid and ursolic acid: Novel hepatitis C virus antivirals that inhibit NS5B activity. Antivir. Res. 2013;98:44–53. doi: 10.1016/j.antiviral.2013.02.003. PubMed DOI
Barton D.H.R., Brooks C.J.W. Morolic acid, a triterpenoid sapogenin. J. Am. Chem. Soc. 1950;72:3314. doi: 10.1021/ja01163a543. DOI
Hostettmann-Kaldas M., Nakanishi K. Moronic acid, a simple triterpenoid keto acid with antimicrobial activity isolated from Ozoroa mucronata. Planta Med. 1979;37:358–360. doi: 10.1055/s-0028-1097349. PubMed DOI
Hamburger M., Riese U., Graf H., Melzig M.F., Ciesielski S., Baumann D., Dittmann K., Wegner C. Constituents in evening primrose oil with radical scavenging, cyclooxygenase, and neutrophil elastase inhibitory activities. J. Agric. Food Chem. 2002;50:5533–5538. doi: 10.1021/jf025581l. PubMed DOI
Paduch R., Kandefer-Szerzen M., Trytek M., Fiedurek J. Terpenes: Substances useful in human healthcare. Arch. Immunol. Ther. Exp. 2007;55:315–327. doi: 10.1007/s00005-007-0039-1. PubMed DOI
Gehrke I.T.S., Neto A.T., Pedroso M., Mostardeiro C.P., Da Cruz I.B.M., Silva U.F., Ilha V., Dalcol I.I., Morel A.F. Antimicrobial activity of Schinus lentiscifolius (Anacardiaceae) J. Ethnopharmacol. 2013;148:486–491. doi: 10.1016/j.jep.2013.04.043. PubMed DOI
Lopez-Martinez S., Navarrete-Vazquez G., Estrada-Soto S., Leon-Rivera I., Rios M.Y. Chemical constituents of the hemiparasitic plant Phoradendron brachystachyum DC Nutt (Viscaceae) Nat. Prod. Res. 2013;27:130–136. doi: 10.1080/14786419.2012.662646. PubMed DOI
Ramirez-Espinosa J.J., Rios M.Y., Lopez-Martinez S., Lopez-Vallejo F., Medina-Franco J.L., Paoli P., Camici G., Navarrete-Vazquez G., Ortiz-Andrade R., Estrada-Soto S. Antidiabetic activity of some pentacyclic acid triterpenoids, role of PTP-1B: In vitro, in silico, and in vivo approaches. Eur. J. Med. Chem. 2011;46:2243–2251. doi: 10.1016/j.ejmech.2011.03.005. PubMed DOI
Ramirez-Espinosa J.J., Garcia-Jimenez S., Rios M.Y., Medina-Franco J.L., Lopez-Vallejo F., Webster S.P., Binnie M., Ibarra-Barajas M., Ortiz-Andrade R., Estrada-Soto S. Antihyperglycemic and sub-chronic antidiabetic actions of morolic and moronic acids, in vitro and in silico inhibition of 11β-HSD 1. Phytomedicine. 2013;20:571–576. doi: 10.1016/j.phymed.2013.01.013. PubMed DOI
Giner-Larza E.M., Manez S., Giner R.M., Recio M.C., Prieto J.M., Cerda-Nicolas M., Rios J.L. Anti-inflammatory triterpenes from Pistacia terebinthus Galls. Planta Med. 2002;68:311–315. doi: 10.1055/s-2002-26749. PubMed DOI
Flekhter O.B., Medvedeva N.I., Tolstikov G.A., Galin F.Z., Yunusov M.S., Mai H.N.T., Tien L.V., Savinova I.V., Boreko E.I., Titov L.P., et al. Synthesis of olean-18(19)-ene derivatives from botulin. Russ. J. Bioorg. Chem. 2009;35:233–239. doi: 10.1134/S1068162009020125. PubMed DOI
Khusnutdinova E.F., Medvedeva N.I., Kazakov D.V., Kukovinets O.S., Lobov A.N., Suponitsky K.Y., Kazakova O.B. An efficient synthesis of moronic and heterobetulonic acids from allobetulin. Tetrahedron Lett. 2016;57:148–151. doi: 10.1016/j.tetlet.2015.11.086. DOI
Chung P.Y. Novel targets of pentacyclic triterpenoids in Staphylococcus aureus: A systematic review. Phytomedicine. 2020;73:152933. doi: 10.1016/j.phymed.2019.152933. PubMed DOI
Knight G.M., Glover R.E., McQuaid C.F., Olaru I.D., Gallandat K., Leclerc Q.J., Fuller N.M., Willcocks S.J., Hasan R., van Kleef E., et al. Antimicrobial resistance and COVID-19: Intersections and implications. eLife. 2021;10:e64139. doi: 10.7554/eLife.64139. PubMed DOI PMC
Ferrando M.L., Coghe F., Scano A., Carta K.G., Orru G. Co-infection of Streptococcus pneumoniae in respiratory infections caused by SARS-CoV-2. Biointerface Res. Appl. Chem. 2021;11:12170–12177.
Furtado N.A.J.C., Pirson L., Edelberg H., Miranda L.M., Loira-Pastoriza C., Preat V., Larondelle Y., André C.M. Pentacyclic triterpene bioavailability: An overview of in vitro and in vivo studies. Molecules. 2017;22:400. doi: 10.3390/molecules22030400. PubMed DOI PMC
Le Devedec F., Fuentealba D., Strandman S., Bohne C., Zhu X.X. Aggregation behavior of pegylated bile acid derivatives. Langmuir. 2012;28:13431–13440. doi: 10.1021/la303218q. PubMed DOI
Castillo P.M., de la Mata M., Casula M.F., Sanchez-Alcazar J.A., Zaderenko A.P. PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system. Beilstein J. Nanotechnol. 2014;5:1312–1319. doi: 10.3762/bjnano.5.144. PubMed DOI PMC
Zacchigna M., Cateni F., Drioli S., Procida G., Altieri T. PEG–ursolic acid conjugate: Synthesis and in vitro release studies. Sci. Pharm. 2014;82:411–422. doi: 10.3797/scipharm.1309-17. PubMed DOI PMC
Medina-O’Donnell M., Rivas F., Reyes-Zurita F.J., Martinez A., Martin-Fonseca S., Garcia-Granados A., Ferrer-Martin R.M., Lupianez J.A., Parra A. Semi-synthesis and antiproliferative evaluation of PEGylated pentacyclic triterpenes. Eur. J. Med. Chem. 2016;118:64–78. doi: 10.1016/j.ejmech.2016.04.016. PubMed DOI
Pasut G., Veronese F.M. State of the art in PEGylation: The great versatility achieved after forty years of research. J. Control. Release. 2012;161:461–472. doi: 10.1016/j.jconrel.2011.10.037. PubMed DOI
Kolate A., Baradia D., Patil S., Vhora I., Kore G., Misra A. PEG—A versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release. 2014;192:67–81. doi: 10.1016/j.jconrel.2014.06.046. PubMed DOI
Bildziukevich U., Vida N., Rárová L., Kolář M., Šaman D., Havlíček L., Drašar P., Wimmer Z. Polyamine derivatives of betulinic acid and β-sitosterol: A comparative investigation. Steroids. 2015;100:27–35. doi: 10.1016/j.steroids.2015.04.005. PubMed DOI
Bildziukevich U., Malík M., Özdemir Z., Rárová L., Janovská L., Šlouf M., Šaman D., Šarek J., Nonappa N., Wimmer Z. Spermine amides of selected triterpenoid acids: Dynamic supramolecular system formation influences the cytotoxicity of the drugs. J. Mater. Chem. B. 2020;8:484–491. doi: 10.1039/C9TB01957J. PubMed DOI
Humpolíčková J., Weber J., Stárková J., Mašínová E., Günterová J., Flaisigová I., Konvalinka J., Majerová T. Inhibition of the precursor and mature forms of HIV-1 protease as a tool for drug evaluation. Sci. Rep. 2018;8:10438. doi: 10.1038/s41598-018-28638-w. PubMed DOI PMC
Konč J., Tichý M., Pohl R., Hodek J., Džubák P., Hajdúch M., Hocek M. Sugar modified pyrimido[4,5-b]indole nucleosides: Synthesis and antiviral activity. Med. Chem. Commun. 2017;8:1856–1862. doi: 10.1039/C7MD00319F. PubMed DOI PMC
Özdemir Z., Rybková M., Vlk M., Šaman D., Rárová L., Wimmer Z. Synthesis and pharmacological effects of diosgenin-betulinic acid conjugates. Molecules. 2020;25:3546. doi: 10.3390/molecules25153546. PubMed DOI PMC
Özdemir Z., Šaman D., Bertula K., Lahtinen M., Bednárová L., Pazderková M., Rárová L., Wimmer Z. Rapid self-healing and thixotropic organogelation of amphiphilic oleanolic acid–spermine conjugates. Langmuir. 2021;37:2693–2706. doi: 10.1021/acs.langmuir.0c03335. PubMed DOI
Ha W., Zhao X.-B., Zhao W.-H., Tang J.-J., Shi Y.P. A colon-targeted podophyllotoxin nanoprodrug: Synthesis, characterization, and supramolecular hydrogel formation for the drug combination. J. Mater. Chem. B. 2021;9:3200–3209. doi: 10.1039/D0TB02719G. PubMed DOI
Keum C., Hong J., Kim D., Lee S.-Y., Kim H. Lysozyme-instructed self-assembly of amino-acid-functionalized perylene diimide for multidrug-resistant cancer cells. ACS Appl. Mater. Interfaces. 2021;13:14866–14874. doi: 10.1021/acsami.0c20050. PubMed DOI
Plant Secondary Metabolites Used for the Treatment of Diseases and Drug Development