Amides of moronic acid and morolic acid with the tripeptides MAG and GAM targeting antimicrobial, antiviral and cytotoxic effects
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39568596
PubMed Central
PMC11575580
DOI
10.1039/d4md00742e
PII: d4md00742e
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A series of amides of selected plant triterpenoids, moronic acid and morolic acid, with the tripeptides MAG and GAM, was designed and synthesized. Two required tripeptides 5 and 10 were synthesized by a step-wise chain elongation of the ethyl esters of either glycine or l-methionine at their N-terminus using Boc-protected amino acids in each step. The tripeptides 5 and 10 were used for the synthesis of 13-23, the derivatives of moronic acid (11) and morolic acid (12), to get a series of amide derivatives of the less frequently studied triterpenoids 11 and 12. The target compounds, and their intermediates, were subjected to an investigation of their antimicrobial, antiviral and cytotoxic activity. Selectivity of the pharmacological effects was found. Generally, the target compounds inhibited only the G+ microorganisms. Compound 16 inhibited Staphylococcus aureus (I = 99.6%; c = 62.5 μM) and Enterococcus faecalis (I = 85%; c = 250 μM). Several compounds showed moderate antiviral effects, both anti-HIV-1, 19 (EC50 = 57.0 ± 4.1 μM, CC50 > 100 μM), 20 (EC50 = 17.8 ± 2.1 μM, CC50 = 41.0 ± 5.2 μM) and 23 (EC50 = 12.6 ± 0.82 μM, CC50 = 38.0 ± 4.2 μM), and anti-HSV-1, 22 (EC50 = 27.7 ± 3.5 μM, CC50 > 100 μM) and 23 (EC50 = 30.9 ± 3.3 μM, CC50 > 100 μM). The target compounds showed no cytotoxicity in cancer cells, however, several of their intermediates were cytotoxic. Compound 21 showed cytotoxicity in HeLa (IC50 = 7.9 ± 2.1 μM), G-361 (IC50 = 8.0 ± 0.6 μM) and MCF7 (IC50 = 8.6 ± 0.2 μM) cancer cell lines, while being non-toxic in normal fibroblasts (BJ; IC50 > 50 μM).
Zobrazit více v PubMed
Liu Y. Yang L. Wang H. Xiong Y. Pharmaceuticals. 2022;15:1169. doi: 10.3390/ph15101169. PubMed DOI PMC
Zhou M. Zhang R.-H. Wang M. Xu G.-B. Liao S.-G. Eur. J. Med. Chem. 2017;131:222–236. doi: 10.1016/j.ejmech.2017.03.005. PubMed DOI
de Souza A. M. de Oliveira C. F. de Oliveira V. B. Betim F. C. M. Miguel O. G. Miguel M. D. Planta Med. 2018;84:1232–1248. doi: 10.1055/a-0656-7262. PubMed DOI
Bildziukevich U. Šlouf M. Rárová L. Šaman D. Wimmer Z. Soft Matter. 2023;19:7625–7634. doi: 10.1039/D3SM01035J. PubMed DOI
Lehbili M. Magid A. A. Kabouche A. Voutquenne-Nazabadioko L. Abedini A. Morjani H. Sarazin T. Gangloff S. C. Kabouche Z. Phytochemistry. 2017;144:33–42. doi: 10.1016/j.phytochem.2017.08.015. PubMed DOI
Yi Y. Li J. Lai X. Zhang M. Kuang Y. Bao Y.-O. Yu R. Hang W. Muturi E. Xue H. Wei H. Li T. Zhuang H. Qiao X. Xiang K. Yang H. Ye M. J. Adv. Res. 2022;36:201–210. doi: 10.1016/j.jare.2021.11.012. PubMed DOI PMC
Wang C. Lu L. Na H. Li X. Wang Q. Jiang X. Xu X. Yu F. Zhang T. Li J. Zhang Z. Zheng B. Liang G. Cai L. Jiang S. Liu K. J. Med. Chem. 2014;57:7342–7354. doi: 10.1021/jm500763m. PubMed DOI
Tao M. Sun H. Liu L. Luo X. Lin G. Li R. Zhao Z. Zhao Z. J. Agric. Food Chem. 2017;65:8626–8633. doi: 10.1021/acs.jafc.7b03195. PubMed DOI
Ozawa A. Speaker R. B. Lindberg I. PLoS One. 2009;4:e5426. doi: 10.1371/journal.pone.0005426. PubMed DOI PMC
Müller T. D. Nogueiras R. Andermann M. L. Andrews Z. B. Anker S. D. Argente J. Batterham R. L. Benoit S. C. Bowers C. Y. Broglio F. Casanueva F. F. D'Alessio D. Depoortere I. Geliebter A. Ghigo E. Cole P. A. Cowley M. Cummings D. E. Dagher A. Diano S. Dickson S. L. Dieguez C. Granata R. Grill H. J. Grove K. Habegger K. M. Heppner K. Heiman M. L. Holsen L. Holst B. Inui A. Jansson J. O. Kirchner H. Korbonits M. Laferrere B. LeRoux C. W. Lopez M. Morin S. Nakazato M. Nass R. Perez-Tilve D. Pfluger P. T. Schwartz T. W. Seeley R. J. Sleeman M. Sun Y. Sussel L. Tong J. Thorner M. O. van der Lely A. J. van der Ploeg L. H. T. Zigman J. M. Kojima M. Kangawa K. Smith R. G. Horvath T. Tschöp M. H. Mol. Metab. 2015;4:437–460. doi: 10.1016/j.molmet.2015.03.005. PubMed DOI PMC
Jafari A. Sadeghpour S. Ghasemnejad-Berenji H. Pashapour S. Ghasemnejad-Berenji M. Int. J. Pept. Res. Ther. 2021;27:1875–1883. PubMed PMC
Hamedy P. A. O'Keeffe M. B. Fitzgerald R. J. Food Chem. 2015;172:400–406. PubMed
Bildziukevich U. Rárová L. Šaman D. Wimmer Z. Eur. J. Med. Chem. 2018;145:41–50. doi: 10.1016/j.ejmech.2017.12.096. PubMed DOI
Bildziukevich U. Rárová L. Janovská L. Šaman D. Wimmer Z. Steroids. 2019;148:91–98. PubMed
Bildziukevich U. Malík M. Özdemir Z. Rárová L. Janovská L. Šlouf M. Šaman D. Šarek J. Nonappa Wimmer Z. J. Mater. Chem. B. 2020;8:484–491. doi: 10.1039/C9TB01957J. PubMed DOI
Bildziukevich U. Özdemir Z. Šaman D. Vlk M. Šlouf M. Rárová L. Wimmer Z. Org. Biomol. Chem. 2022;20:8157–8163. doi: 10.1039/D2OB01172G. PubMed DOI
Özdemir Z. Bildziukevich U. Čapková M. Lovecká P. Rárová L. Šaman D. Zgarbová M. Lapuníková B. Weber J. Kazakova O. Wimmer Z. Biomedicines. 2021;9:951. doi: 10.3390/biomedicines9080951. PubMed DOI PMC
Černá L. Bildziukevich U. Rárová L. Trylčová J. Šaman D. Weber J. Lovecká P. Wimmer Z. React. Chem. Eng. 2024;9:1087–1095. doi: 10.1039/D4RE00032C. PubMed DOI PMC
Hossain T. J. Eur. J. Microbiol. Immunol. 2024;14:97–115. PubMed PMC
Kroneislová G. Macůrková A. Novotná Z. Ježek R. Lovecká P. Folia Microbiol. 2024;69:445–457. doi: 10.1007/s12223-024-01132-9. PubMed DOI PMC