Selected Pentacyclic Triterpenoids and Their Derivatives as Biologically Active Compounds

. 2025 Jul 24 ; 30 (15) : . [epub] 20250724

Status In-Process Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40807280

Grantová podpora
A1_FPBT_2024_003 University of Chemistry and Technology, Prague

Medicinal plants have been used in traditional medicines all over the world to treat human diseases throughout human history. Many of the medicinal plants have frequently become food and nutrition plants. A more sophisticated investigation resulted in discovering numbers of biologically important secondary metabolites of plants. Pentacyclic triterpenoids represent an important group of the plant secondary metabolites that have emerged as having top biological importance. While the most widespread plant triterpenoids and a majority of their semisynthetic derivatives have been reviewed quite often, other plant pentacyclic triterpenoids and their derivatives have so far been less frequently studied. Therefore, attention has been focused on selected pentacyclic triterpenoids, namely on arjunolic acid, asiatic acid, α- and β-boswellic acids, corosolic acid, maslinic acid, morolic acid, moronic acid, and the friedelane triterpenoids, and on different derivatives of the selected triterpenoids in this review article. A literature search was made in the Web of Science for the given keywords, covering the required area of secondary plant metabolites and their semisynthetic derivatives starting in 2023 and ending in February 2025. The most recently published findings on the biological activity of the selected triterpenoids, and on the structures and the biological activity of their relevant derivatives have been summarized therein. Even if cytotoxicity of the compounds has mainly been reviewed, other biological effects are mentioned if they appeared in the original articles in connection with the selected triterpenoids and their derivatives, listed above. A comparison of the effects of the parent plant products and their derivatives has also been made.

Zobrazit více v PubMed

Furtado N.A.J.C., Pirson L., Edelberg H., Miranda L.M., Loira-Pastoriza C., Preat V., Larondelle Y., Andre C.M. Pentacyclic triterpene bioavailability: An overview of in vitro and in vivo studies. Molecules. 2017;22:400. doi: 10.3390/molecules22030400. PubMed DOI PMC

Dutt R., Garg V., Khatri N., Madan A.K. Phytochemicals an anticancer drug development. Anti-Cancer Agents Med. Chem. 2019;19:172–183. doi: 10.2174/1871520618666181106115802. PubMed DOI

Torre L.A., Siegel R.L., Ward E.M., Jemal A. Global cancer incidence and mortality rates and trends—An update. Cancer Epidemiol. Biomark. Prev. 2016;25:16–27. doi: 10.1158/1055-9965.EPI-15-0578. PubMed DOI

Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI

Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics. CA Cancer J. Clin. 2021;71:7–33. PubMed

Falzone L., Salomone S., Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol. 2018;9:1300. doi: 10.3389/fphar.2018.01300. PubMed DOI PMC

Li K., Zhang Z., Mei Y., Li M., Yang Q., Wu Q., Yang H., He L., Liu S. Targeting the innate immune system with nanoparticles for cancer immunotherapy. J. Mater. Chem. B. 2022;10:1709–1733. doi: 10.1039/D1TB02818A. PubMed DOI

Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Liu Y., Yang L., Wang H., Xiong Y. Recent advances in antiviral activities of triterpenoids. Pharmaceuticals. 2022;15:1169. doi: 10.3390/ph15101169. PubMed DOI PMC

Vasan N., Baselga J., Hyman D.M. A view on drug resistance in cancer. Nature. 2019;575:299–309. doi: 10.1038/s41586-019-1730-1. PubMed DOI PMC

Newman D.J., Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020;83:770–803. doi: 10.1021/acs.jnatprod.9b01285. PubMed DOI

Ghirga F., Quaglio D., Mori M., Cammarone S., Iazzetti A., Goggiamani A., Ingallina C., Botta B., Calcaterra A. A unique high-diversity natural product collection as a reservoir of new therapeutic leads. Org. Chem. Front. 2021;8:996–1025. doi: 10.1039/D0QO01210F. DOI

Zhong Z., Vong C.T., Chen F., Tan H., Zhang C., Wang N., Cui L., Wang Y., Feng Y. Immunomodulatory potential of natural products from herbal medicines as immune checkpoints inhibitors: Helping to fight against cancer via multiple targets. Med. Res. Rev. 2022;42:1246–1279. doi: 10.1002/med.21876. PubMed DOI PMC

Cui J., Qian J., Chow L.M.-C., Jia J. Natural products targeting cancer stem cells: A revisit. Curr. Med. Chem. 2021;28:6773–6804. doi: 10.2174/0929867328666210405111913. PubMed DOI

Salvador J.A.R., Leal A.S., Valdeira A.S., Goncalves B.M.F., Alho D.P.S., Figueiredo S.A.C., Silvestre S.M., Mendes V.I.S. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur. J. Med. Chem. 2017;142:95–130. doi: 10.1016/j.ejmech.2017.07.013. PubMed DOI

Valdeira A.S.C., Darvishi E., Woldemichael G.M., Beutler J.A., Gustafson K.R., Salvador J.A.R. Madecassic acid derivatives as potential anticancer agents: Synthesis and cytotoxic evaluation. J. Nat. Prod. 2019;82:2094–2105. doi: 10.1021/acs.jnatprod.8b00864. PubMed DOI PMC

Hodon J., Borkova L., Pokorny J., Kazakova A., Urban M. Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. Eur. J. Med. Chem. 2019;182:111653. doi: 10.1016/j.ejmech.2019.111653. PubMed DOI

Brandes B., Hoenke S., Fischer L., Csuk R. Design, synthesis and cytotoxicity of BODIPY FL labelled triterpenoids. Eur. J. Med. Chem. 2020;185:111858. doi: 10.1016/j.ejmech.2019.111858. PubMed DOI

Kamble S.M., Goyal S., Pati C.R. Multifunctional pentacyclic triterpenoids as adjuvants in cancer chemotherapy: A review. RSC Adv. 2014;4:33370–33382. doi: 10.1039/C4RA02784A. DOI

Wang Y., Luo Z., Zhou D., Wang X., Chen J., Gong S., Yu Z. Nano-assembly of ursolic acid with platinum prodrug overcomes multiple deactivation pathways in platinum-resistant ovarian cancer. Biomater. Sci. 2021;9:4110–4119. doi: 10.1039/D1BM00087J. PubMed DOI

Khan M.W., Zou C., Hassan S., Din F.U., Abdoul Razak M.Y., Nawaz A., Zeb A., Wahab A., Bangash S.A. Cisplatin and oleanolic acid Co-loaded pH-sensitive CaCO3 nanoparticles for synergistic chemotherapy. RSC Adv. 2022;12:14808–14818. doi: 10.1039/D2RA00742H. PubMed DOI PMC

Wang W.-Y., Yang Z.-H., Li A.-L., Liu Q.-S., Sun Y., Gu W. Design, synthesis, anticancer activity and mechanism studies of novel 2-amino-4-aryl-pyrimidine derivatives of ursolic acid. New J. Chem. 2022;46:2335–2350. doi: 10.1039/D1NJ05294B. DOI

Kujawski J., Popielarska H., Myka A., Drabinska B., Bernard M.K. The log P parameter as a molecular descriptor in the computer-aided drug design—An overview. Comp. Methods Sci. Technol. 2012;18:81–88. doi: 10.12921/cmst.2012.18.02.81-88. DOI

Zhao R., Kalvass J.C., Pollack G.M. Assessment of blood-brain barrier permeability using the in situ mouse brain perfusion technique. Pharm. Res. 2009;26:1657–1664. doi: 10.1007/s11095-009-9876-4. PubMed DOI

Kalani K., Yadav D.K., Khan F., Srivastava S.K., Suri N. Pharmacophore, QSAR, and ADME based semisynthesis and in vitro evaluation of ursolic acid analogs for anticancer activity. J. Mol. Model. 2012;18:3389–3413. doi: 10.1007/s00894-011-1327-6. PubMed DOI

Moralev A.D., Zenkova M.A., Markov A.V. Complex inhibitory activity of pentacyclic triterpenoids against cutaneous melanoma in vitro and in vivo: A literature review and reconstruction of their melanoma-related protein interactome. ACS Pharmacol. Transl. Sci. 2024;7:3358–3384. doi: 10.1021/acsptsci.4c00422. PubMed DOI PMC

Zhou M., Zhang R.-H., Wang M., Xu G.-B., Liao S.-G. Prodrugs of triterpenoids and their derivatives. Eur. J. Med. Chem. 2017;131:222–236. doi: 10.1016/j.ejmech.2017.03.005. PubMed DOI

de Souza A.M., de Oliveira C.F., de Oliveira V.B., Betim F.C.M., Miguel O.G., Miguel M.D. Traditional uses, phytochemistry, and antimicrobial activities of Eugenia species—A review. Planta Med. 2018;84:1232–1248. doi: 10.1055/a-0656-7262. PubMed DOI

Morparia S., Mehta C., Suvarna V. Recent advancements of betulinic acid-based drug delivery systems for cancer therapy (2002–2023) Nat. Prod. Res. 2024;39:3260–3280. doi: 10.1080/14786419.2024.2412838. PubMed DOI

Bravo-Alfaro D.A., Ochoa-Rodriguez L.R., Prokhorov Y., Perez-Robles J.F., Sampieri-Moran J.M., Garcia-Casillas P.E., Paul S., Garcia H.S., Luna-Barcenas G. Nanoemulsions of betulinic acid stabilized with modified phosphatidylcholine increase the stability of the nanosystems and the drug’s bioavailability. Colloids Surf. B Biointerfaces. 2025;245:114291. doi: 10.1016/j.colsurfb.2024.114291. PubMed DOI

Patel J., Prajapati D., Dodiya T., Chitte K.M. Review on oleanolic acid: Extraction techniques, analytical methods and pharmacology. Adv. Pharmacol. Pharm. 2025;13:50–62. doi: 10.13189/app.2025.130106. DOI

Yang W., Chen X., Li Y., Guo S., Wang Z., Yu X. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun. 2020;15:1–13. doi: 10.1177/1934578X20903555. DOI

Luginina J., Kroškins V., Lacis R., Fedorovska E., Demir Ö., Dubnika A., Loca D., Turks M. Synthesis and preliminary cytotoxicity evaluation of water soluble pentacyclic triterpenoid phosphonates. Sci. Rep. 2024;14:28031. doi: 10.1038/s41598-024-76816-w. PubMed DOI PMC

Zhang H., Guo J., Hu J., Zhou M. Terpenoid-based supramolecular materials: Fabrications, performances, applications. Supramol. Chem. 2023;34:105–131. doi: 10.1080/10610278.2023.2260044. DOI

Bildziukevich U., Wimmerová M., Wimmer Z. Saponins of selected triterpenoids as potential therapeutic agents: A review. Pharmaceuticals. 2023;16:386. doi: 10.3390/ph16030386. PubMed DOI PMC

Özdemir Z., Nonappa, Wimmer Z. Triterpenoid building blocks for functional nanoscale assemblies: A review. ACS Appl. Nano Mater. 2022;5:16264–16277. doi: 10.1021/acsanm.2c03304. DOI

Özdemir Z., Wimmer Z. Selected plant triterpenoids and their amide derivatives in cancer treatment: A review. Phytochem. 2022;203:113340. doi: 10.1016/j.phytochem.2022.113340. PubMed DOI

Bildziukevich U., Özdemir Z., Wimmer Z. Recent achievements in medicinal and supramolecular chemistry of betulinic acid and its derivatives. Molecules. 2019;24:3546. doi: 10.3390/molecules24193546. PubMed DOI PMC

Li W., Xing Q., Liu Z., Liu R., Hu Y., Yan Q., Liu X., Zhang J. The signaling pathways of traditional Chinese medicine in treating diabetic retinopathy. Front. Pharmacol. 2023;14:1165649. doi: 10.3389/fphar.2023.1165649. PubMed DOI PMC

Yousefian M., Hosseinzadeh H., Hayes A.W., Hadizadeh F., Karimi G. The protective effect of natural compounds on doxorubicin-induced cardiotoxicity via nicotinamide adenine dinucleotide phosphate oxidase inhibition. J. Pharm. Pharmacol. 2022;74:351–359. doi: 10.1093/jpp/rgab109. PubMed DOI

Liu S., Liu H., Zhang L., Ma C., El-Aty A.M.A. Edible pentacyclic triterpenes: A review of their sources, bioactivities, bioavailability, self-assembly behavior, and emerging applications as functional delivery vehicles. Crit. Rev. Food Sci. Nutr. 2024;64:5203–5219. doi: 10.1080/10408398.2022.2153238. PubMed DOI

Duy N.D., Bang N.A., Yen P.H., Trang D.T., Trang B.T.N., Thuy N.T.K., Cuc N.T., Nhiem N.X., Kiem P.V., Ban N.K., et al. Four new pentacyclic triterpene glycosides isolated from the fruits of Cryptolepis buchananii R.Br. ex Roem. & Schult and their inhibition of NO production in LPS-activated RAW264.7 cells. Chem. Biodivers. 2023;20:e202301683. PubMed

Olanipekun B.E., Ponnapalli M.G., Patel H.K., Munipalle K., Shaik K. Design, synthesis of new phenyl acetylene and isoxazole analogues of arjunolic acid as potent tyrosinase and alpha glucosidase inhibitors. Nat. Prod. Res. 2023;37:1092–1097. doi: 10.1080/14786419.2021.1986817. PubMed DOI

Bhujel M., Sripada L., Buvanesvaragurunathan K., Perumal P., Jain D., Pandey N., Bajaj A., Golakoti N.R. Synthesis and anti-cancer activity of acetals of arjunolic acid. New J. Chem. 2024;48:16957–16967. doi: 10.1039/D4NJ03095H. DOI

Goncalves B.M.F., Mendes V.I.S., Silvestre S.M., Salvador J.A.R. Design, synthesis, and biological evaluation of new arjunolic acid derivatives as anticancer agents. RSC Med. Chem. 2023;14:313–331. doi: 10.1039/D2MD00275B. PubMed DOI PMC

Zhou Z., Nan Y., Li X., Ma M., Du Y., Chen G., Ning N., Huang S., Gu Q., Li W., et al. Hewthorn with “homology of medicine and food”: A review of anticancer effects and mechanisms. Front. Pharmacol. 2024;15:1384189. PubMed PMC

Magyari-Pavel I.Z., Moaca E.-A., Avram S., Diaconeasa Z., Haidu D., Stefanut M.N., Rostas A.M., Muntean D., Bora L., Badescu B., et al. Antioxidant extracts from Greek and Spanish olive leaves: Antimicrobial, anticancer and antiangiogenic effects. Antioxidants. 2024;13:774. doi: 10.3390/antiox13070774. PubMed DOI PMC

Tchetan E., Ortiz S., Olounlade P.A., Azando E.V.B., Avril C., Demblon D., Hounzangbe-Adote S.M., Gbaguidi F.A., Quetin-Leclercq J. Antitrypanosomal activity of Crossopteryx febrifuga and phytochemical profiling using LC-MS/MS analysis coupled to molecular network and SIRIUS. Fitoterapia. 2024;179:106255. doi: 10.1016/j.fitote.2024.106255. PubMed DOI

Hasan S.N., Banerjee J., Patra S., Kar S., Das S., Samanta S., Wanigasekera D., Pavithra U., Wijesekera K., Napagoda M., et al. Self-assembled renewable nano-sized pentacyclic triterpenoid maslinic acids in aqueous medium for anti-leukemic, antibacterial and biocompatibility studies: An insight into targeted proteins-compound interactions based mechanistic pathway prediction through molecular docking. Int. J. Biol. Macromol. 2023;245:125416. PubMed

Deng J., Wang H., Mu X., He X., Zhao F., Meng Q. Advances in research on the preparation and biological activity of maslinic acid. Mini Rev. Med. Chem. 2021;21:79–89. doi: 10.2174/1389557520666200722134208. PubMed DOI

Alam S., Khan F. 3D-QSAR studies on maslinic acid analogs for anticancer activity against breast cancer cell line MCF-7. Sci. Rep. 2017;7:6019. doi: 10.1038/s41598-017-06131-0. PubMed DOI PMC

Majumdar R., Tantayanon S., Bag B.G. A novel trihybrid material based on renewables: An efficient recyclable heterogeneous catalyst for C–C coupling and reduction reactions. Chem. Asian J. 2016;11:2406–2414. doi: 10.1002/asia.201600773. PubMed DOI

Bag B.G., Hasan S.N., Ghorai S., Panja S.K. First self-assembly of dihydroxy triterpenoid maslinic acid yielding vesicles. ACS Omega. 2019;4:7684–7769. doi: 10.1021/acsomega.8b03667. DOI

Yan R., Liu L., Huang X., Quan Z.-S., Shen Q.-K., Guo H.-Y. Bioactivities and structure-activity relationships of maslinic acid derivatives: A review. Chem. Biodivers. 2024;21:e202301327. doi: 10.1002/cbdv.202301327. PubMed DOI

Reinhardt J.K., Schertler L., Bussmann H., Sellner M., Smiesko M., Boonen G., Potterat O., Hamburger M., Butterweck V. Vitex agnus castus extract Ze 440: Diterpene and triterpene’s interactions with dopamine D2 receptor. Int. J. Mol. Sci. 2024;25:11456. doi: 10.3390/ijms252111456. PubMed DOI PMC

Denner T.C., Heise N.V., Serbian I., Angeli A., Supuran C.T., Csuk R. An asiatic acid derived trisulfamate acts as a nanomolar inhibitor of human carbonic anhydrase VA. Steroids. 2024;205:109381. doi: 10.1016/j.steroids.2024.109381. PubMed DOI

Aspatwar A., Supuran C.T., Waheed A., Sly W.S., Parkkila S. Mitochondrial carbonic anhydrase VA and VB: Properties and roles in health and disease. J. Physiol. 2023;601:257–274. doi: 10.1113/JP283579. PubMed DOI PMC

Supuran C.T. Carbonic anhydrase inhibitors: An update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin. Investig. Drugs. 2021;30:1197–1208. doi: 10.1080/13543784.2021.2014813. PubMed DOI

Supuran C.T. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg. Med. Chem. Lett. 2023;93:129411. doi: 10.1016/j.bmcl.2023.129411. PubMed DOI

Spivak A.Y., Kuzmina U.S., Nedopekina D.A., Dubinin M.V., Khalitova R.R., Davletshin E.V., Vakhitova Y.V., Belosludtsev K.N., Vakhitov V.A. Synthesis and comparative analysis of the cytotoxicity and mitochondrial effects of triphenylphosphonium and F16 maslinic and corosolic acid hybrid derivatives. Steroids. 2024;209:109471. doi: 10.1016/j.steroids.2024.109471. PubMed DOI

Hoenke S., Heise N.V., Kahnt M., Deigner H.-P., Csuk R. Betulinic acid derived amides are highly cytotoxic, apoptotic and selective. Eur. J. Med. Chem. 2020;207:112815. doi: 10.1016/j.ejmech.2020.112815. PubMed DOI

Heise N., Lehmann F., Csuk R., Mueller T. Targeted theranostics: Near-infrared triterpenoic acid-rhodamine conjugates as prerequisites for precise cancer diagnosis and therapy. Eur. J. Med. Chem. 2023;259:115663. doi: 10.1016/j.ejmech.2023.115663. PubMed DOI

Heise N.V., Csuk R., Mueller T. (Iso)quinoline amides derived from corosolic acid exhibit high cytotoxicity, and the potential for overcoming drug resistance in human cancer cells. Eur. J. Med. Chem. Rep. 2024;12:100198. doi: 10.1016/j.ejmcr.2024.100198. DOI

Choudhary N., Singh N., Singh A.P., Singh A.P. Medicinal uses of maslinic acid: A review. J. Drug Deliv. Therapeut. 2021;11:237–240. doi: 10.22270/jddt.v11i2.4588. DOI

Heise N.V., Hoenke S., Serbian I., Csuk R. An improved partial synthesis of corosolic acid and its conversion to highly cytotoxic mitocans. Eur. J. Med. Chem. Rep. 2022;6:100073. doi: 10.1016/j.ejmcr.2022.100073. DOI

Gehrke I.T.S., Neto A.T., Pedroso M., Mostardeiro C.P., Da Cruz I.B.M., Silva U.F., Ilha V., Dalcol I.I., Morel A.F. Antimicrobial activity of Schinus lentiscifolius (Anacardiaceae) J. Ethnopharmacol. 2013;148:486–491. doi: 10.1016/j.jep.2013.04.043. PubMed DOI

Cao S., Guza R.C., Miller J.S., Andriantsiferana R., Rasamison V.E., Kingston D.G.I. Cytotoxic triterpenoids from Acridocarpus vivy from the Madagascar rain forest. J. Nat. Prod. 2004;67:986–989. doi: 10.1021/np040058h. PubMed DOI

Chang F.-R., Hsieh Y.-C., Chang Y.-F., Lee K.-H., Wu Y.-C., Chang L.-K. Inhibition of the Epstein-Barr virus lytic cycle by moronic acid. Antivir. Res. 2010;85:490–495. doi: 10.1016/j.antiviral.2009.12.002. PubMed DOI

Osorio A.A., Munoz A., Torres-Romero D., Bedoya L.M., Perestelo N.R., Jimenez I.A., Alcami J., Bazzocchi I.L. Olean-18-ene triterpenoids from Celastraceae species inhibit HIV replication targeting NF-κB and Sp1 dependent transcription. Eur. J. Med. Chem. 2012;52:295–303. doi: 10.1016/j.ejmech.2012.03.035. PubMed DOI

Knorr R., Hamburger M. Quantitative analysis of anti-inflammatory and radical scavenging triterpenoid esters in evening primrose oil. J. Agric. Food Chem. 2004;52:3319–3324. doi: 10.1021/jf049949l. PubMed DOI

Zaugg J., Potterat O., Plescher A., Honermeier B., Hamburger M. Quantitative analysis of anti-inflammatory and radical scavenging triterpenoid esters in evening primrose seeds. J. Agric. Food Chem. 2006;54:6623–6628. doi: 10.1021/jf0611466. PubMed DOI

Ramirez-Espinosa J.J., Rios M.Y., Lopez-Martinez S., Lopez-Vallejo F., Medina-Franco J.L., Paoli P., Camici G., Navarrete-Vazquez G., Ortiz-Andrade R., Estrada-Soto S. Antidiabetic activity of some pentacyclic acid triterpenoids, role of PTP-1B: In vitro, in silico, and in vivo approaches. Eur. J. Med. Chem. 2011;46:2243–2251. doi: 10.1016/j.ejmech.2011.03.005. PubMed DOI

Ramirez-Espinosa J.J., Garcia-Jimenez S., Rios M.Y., Medina-Franco J.L., Lopez-Vallejo F., Webster S.P., Binnie M., Ibarra-Barajas M., Ortiz-Andrade R., Estrada-Soto S. Antihyperglycemic and sub-chronic antidiabetic actions of morolic and moronic acids, in vitro and in silico inhibition of 11β-HSD 1. Phytomedicine. 2013;20:571–576. doi: 10.1016/j.phymed.2013.01.013. PubMed DOI

Hostettmann-Kaldas M., Nakanishi K. Moronic acid, a simple triterpenoid keto acid with antimicrobial activity isolated from Ozoroa mucronata. Planta Med. 1979;37:358–360. doi: 10.1055/s-0028-1097349. PubMed DOI

Srisawat P., Yasumoto S., Fukushima E.O., Robertlee J., Seki H., Muranaka T. Production of the bioactive plant-derived triterpenoid morolic acid in engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 2020;117:2198–2208. doi: 10.1002/bit.27357. PubMed DOI

de Menezes R.P.B., Tavares J.F., Kato M.J., da Rocha Coelho F.A., Martin H.-J., Muratov E., dos Santos A.L.S., da Franca Rodrigues K.A., Scotti L., Scotti M.T. Annonaceae terpenoids as potential Leishmanicidal agents. Rev. Brasil. Farmacogn. 2022;32:741–748. doi: 10.1007/s43450-022-00296-0. DOI

de Souza V.M.R., Maciel N.B., Machado Y.A.A., de Souza J.M.S., Rodrigues R.R.L., dos Santos A.L.S., da Silva M.G.G., da Silva I.G.M., Barros-Cordeiro K.B., Bao S.N., et al. Anti-Leishmania amazonensis activity of morolic acid, a pentacyclic triterpene with effects on innate immune response during macrophage infection. Microorganisms. 2024;12:1392. doi: 10.3390/microorganisms12071392. PubMed DOI PMC

Chae S.I., Yi S.A., Nam K.H., Park K.J., Yun J., Kim K.H., Lee J., Han J.-W. Morolic acid 3-O-caffeate inhibits adipogenesis by regulating epigenetic gene expression. Molecules. 2020;25:5910. doi: 10.3390/molecules25245910. PubMed DOI PMC

Bildziukevich U., Šlouf M., Rárová L., Šaman D., Wimmer Z. Nano-assembly of cytotoxic amides of moronic and morolic acid. Soft Matter. 2023;19:7625–7634. doi: 10.1039/D3SM01035J. PubMed DOI

Bildziukevich U., Černá L., Trylčová J., Kvasnicová M., Rárová L., Šaman D., Lovecká P., Weber J., Wimmer Z. Amides of moronic acid and morolic acid with the tripeptides MAG and GAM targeting antimicrobial, antiviral and cytotoxic effects. RSC Med. Chem. 2025;16:801–811. doi: 10.1039/D4MD00742E. PubMed DOI PMC

Lehbili M., Magid A.A., Kabouche A., Voutquenne-Nazabadioko L., Abedini A., Morjani H., Sarazin T., Gangloff S.C., Kabouche Z. Oleanane-type triterpene saponins from Calendula stellata. Phytochemistry. 2017;144:33–42. doi: 10.1016/j.phytochem.2017.08.015. PubMed DOI

Yi Y., Li J., Lai X., Zhang M., Kuang Y., Bao Y.-O., Yu R., Hang W., Muturi E., Xue H., et al. Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. J. Adv. Res. 2022;36:201–210. doi: 10.1016/j.jare.2021.11.012. PubMed DOI PMC

Kciuk M., Garg A., Rohilla M., Chaudhary R., Dhankhar S., Dhiman S., Bansal S., Saini M., Singh T.G., Chauhan S., et al. Therapeutic potential of plant-derived compounds and plant extracts in rheumatoid arthritis—Comprehensive review. Antioxidants. 2024;13:775. doi: 10.3390/antiox13070775. PubMed DOI PMC

Gostynska A., Buzun K., Zolnowska I., Krajka-Kuzniak V., Mankowska-Wierzbicka D., Jelinska A., Stawny M. Natural bioactive compounds: The promising candidates for the treatment of intestinal failure-associated liver disease. Clin. Nutr. 2024;43:1952–1971. doi: 10.1016/j.clnu.2024.07.004. PubMed DOI

Karimi M., Vakili K., Rashidian P., Razavi-Amoli S.-K., Akhbari M., Kazemi K. Effect of boswellia (Boswellia serrata L.) supplementation on glycemic markers and lipid profile in type 2 diabetic patients: A systematic review and meta-analysis. Front. Clin. Diabetes Healthc. 2024;5:1466408. doi: 10.3389/fcdhc.2024.1466408. PubMed DOI PMC

Yadav J.P., Verma A., Pathak P., Dwivedi A.R., Singh A.K., Kumar P., Khalilullah H., Jaremko M., Emwas A.-H., Patel D.K. Phytoconstituents as modulators of NF-κB signalling: Investigating therapeutic potential for diabetic wound healing. Biomed. Pharmacother. 2024;177:117058. doi: 10.1016/j.biopha.2024.117058. PubMed DOI

Maouche A., Boumedienr K., Baugé C. Bioactive compounds in osteoarthritis: Molecular mechanisms and therapeutic roles. Int. J. Mol. Sci. 2024;25:11656. doi: 10.3390/ijms252111656. PubMed DOI PMC

Hussain H., Wang D., El-Seedi H.R., Rashan L., Ahmed I., Abbas M., Mamadalieva N.Z., Sultani H.N., Hussain M.I., Shah S.T.A. Therapeutic potential of boswellic acids: An update patent review (2016–2023) Exp. Opin. Ther. Patents. 2024;34:723–732. doi: 10.1080/13543776.2024.2369626. PubMed DOI

Cui N., Li M.-J., Wang Y.-W., Meng Q., Shi Y.-J., Ding Y. Boswellic acids: A review on its pharmacological properties, molecular mechanism and bioavailability. Trad. Med. Res. 2024;9:60. doi: 10.53388/TMR20240128002. DOI

Ur Rehman N., Rafiq K., Avula S.K., Gibbons S., Csuk R., Al-Harrasi A. Triterpenoids from Frankincense and Boswellia: A focus on their pharmacology and 13C-NMR assignments. Phytochemistry. 2025;229:114297. doi: 10.1016/j.phytochem.2024.114297. PubMed DOI

Kulawik-Pioro A., Gozdzicka W., Kruk J., Piotrowska A. Plant-origin additives from Boswellia species in emulgel formulation for radiotherapy skin care. Appl. Sci. 2024;14:8648. doi: 10.3390/app14198648. DOI

Joseph A., Abhilash M.B., Mulakal J.N., Madhavamenon K.I. Pharmacokinetics of a natural self-emulsifying reversible hybrid-hydrogel (N’SERH) formulation of full-spectrum Boswellia serrata oleo-gum resin extract: Randomised double-blinded placebo-controlled crossover study. Biol. Pharm. Bull. 2024;47:1583–1593. doi: 10.1248/bpb.b24-00306. PubMed DOI

Ale-Ahmad A., Kazemi S., Daraei A., Sepidarkish M., Moghadamnia A.A., Parsian H. pH-Sensitive nanoformulation of acetyl-11-keto-beta-boswellic acid (AKBA) as a potential antiproliferative agent in colon adenocarcinoma (in vitro and in vivo) Cancer Nanotechnol. 2024;15:49. doi: 10.1186/s12645-024-00289-9. DOI

Jawad M., Bhatia S., Al-Harrasi A., Ullah S., Halim S.A., Khan A., Koca E., Aydemir L.Y., Diblan S., Pratap-Singh A. Antimicrobial topical polymeric films loaded with acetyl-11-keto-β-boswellic acid (AKBA), boswellic acid and silver nanoparticles: Optimization, characterization, and biological activity. Heliyon. 2024;10:e31671. doi: 10.1016/j.heliyon.2024.e31671. PubMed DOI PMC

Solanki N., Kumar S., Seema, Dureja H. Antibacterial effects of bioactive boswellic acids loaded chitosan nanoparticles against Gram-positive and Gram-negative bacteria. Ind. J. Pharm. Edu. Res. 2024;58:1189–1197. doi: 10.5530/ijper.58.4.131. DOI

Karima S., Khatami S.H., Ehtiati S., Khoshtinatnikkhouy S., Kachouei R.A., Jaha-Abad A.J., Tafakhori A., Firoozpour H., Salmani F. Acetyl 11-keto beta-boswellic acid improves neurological functions in a mouse model of multiple sclerosis. Inflammation. 2024 doi: 10.1007/s10753-024-02176-2. Online ahead of print . PubMed DOI

Dong F., Zheng L., Zhang X. Alpha-boswellic acid accelerates acute wound healing via NF-κB signaling pathway. PLoS ONE. 2024;19:e0308028. doi: 10.1371/journal.pone.0308028. PubMed DOI PMC

Fahmy S.A., Sedky N.K., Hassan H.A.F.M., Abdel-Kader N.M., Mahdy N.K., Amin M.U., Preis E., Bakowsky U. Synergistic enhancement of carboplatin efficacy through pH-sensitive nanoparticles formulated using naturally derived Boswellia extract for colorectal cancer therapy. Pharmaceutics. 2024;16:1282. doi: 10.3390/pharmaceutics16101282. PubMed DOI PMC

Avula S.K., Ur Rehman N., Khan F., Alam T., Halim S.A., Khan A., Anwar M.U., Rahman S.M., Gibbons S., Csuk R., et al. New 1H-1,2,3-triazole analogues of boswellic acid are potential anti-breast cancer agents. J. Mol. Struct. 2025;1319:139447. doi: 10.1016/j.molstruc.2024.139447. DOI

Yu L., Xie X., Cao X., Chen J., Chen G., Chen Y., Li G., Qin J., Peng F., Peng C. The anticancer potential of maslinic acid and its derivatives: A review. Drug Des. Devel. Ther. 2021;15:3863–3879. doi: 10.2147/DDDT.S326328. PubMed DOI PMC

Rosellini M., Schulze A., Omer E.A., Ali N.T., Marini F., Kupper J.H., Efferth T. The effect of plastic-related compounds on transcriptome-wide gene expression on CYP2C19-overexpressing HepG2 cells. Molecules. 2023;28:5952. doi: 10.3390/molecules28165952. PubMed DOI PMC

Singh S.K., Shrivastava S., Mishra A.K., Kumar D., Pandey V.K., Srivastava P., Pradhan B., Behera B.C., Bahuguna A., Baek K.-H. Friedelin: Structure, biosynthesis, extraction, and its potential health impact. Molecules. 2023;28:7760. doi: 10.3390/molecules28237760. PubMed DOI PMC

Anokwah D., Asante-Kwatia E., Asante J., Obeng-Mensah D., Danquah C.A., Amponsah I.K., Ameyaw E.O., Biney R.P., Obese E., Oberer L., et al. Antibacterial, resistance, modulation, anti-biofilm formation, and efflux pump inhibition properties of Loeseneriella africana (Willd.) N. Halle (Celastraceae) stem extract and its constituents. Microorganisms. 2024;12:7. doi: 10.3390/microorganisms12010007. PubMed DOI PMC

Teclegeorgish Z.W., Mokgalaka N.S., Kemboi D., Krause R.W.M., Siwe-Noundou X., Nyemba G.R., Davison C., de la Mare J.-A., Tembu V.J. Phytochemicals from Pterocarpus angolensis DC and their cytotoxic activities against breast cancer cells. Plants. 2024;13:301. doi: 10.3390/plants13020301. PubMed DOI PMC

Nguyen T.T., Cao D.T., Tran H.N., Nguyen T.H., Pham G.D., Tran V.H., Pham Q.D., Tran T.T.T., Vu M.T., Vu D.H. Pentacyclic triterpenes from the leaves of Camellia hakodae Ninh. Nat. Prod. Res. 2025;39:3787–3792. doi: 10.1080/14786419.2024.2315597. PubMed DOI

Oliveira L.R., Vidal D.M., Freitas T.R., de P. Sabino A., Duarte L.P., de Sousa G.F. Synthesis and cytotoxic activity of friedelinyl esters. Chem. Biodivers. 2024;21:e202400652. doi: 10.1002/cbdv.202400652. PubMed DOI

Smith P.F., Ogundele A., Forrest A., Wilton J., Salzwedel K., Doto J., Allaway G.P., Martin D.E. Phase I and II study of the safety, virologic effect, and pharmacokinetics/pharmacodynamics of single-dose 3-O-(3′,3′-dimethylsuccinyl)betulinic acid (bevirimat) against human immunodeficiency virus infection. Antimicrob. Agents Chemother. 2007;51:3574–3581. doi: 10.1128/AAC.00152-07. PubMed DOI PMC

Martin D.E., Blum R., Doto J., Galbraith H., Ballow C. Multiple-dose pharmacokinetics and safety of bevirimat, a novel inhibitor of HIV maturation, in healthy volunteers. Clin. Pharmacokinet. 2007;46:589–598. doi: 10.2165/00003088-200746070-00004. PubMed DOI

Fulda S. Betulinic acid for cancer treatment and prevention. Int. J. Mol. Sci. 2008;9:1096–1107. doi: 10.3390/ijms9061096. PubMed DOI PMC

Wimmerová M., Bildziukevich U., Wimmer Z. Selected plant triterpenoids and their derivatives as antiviral agents. Molecules. 2023;28:7718. doi: 10.3390/molecules28237718. PubMed DOI PMC

Sit S.-Y., Chen Y., Chen J., Venables B.L., Swidorski J.J., Xu L., Sin N., Hartz R.A., Lin Z., Zhang S., et al. Invention of VH-937, a potent HIV-1 maturation inhibitor with the potential for infrequent oral dosing in humans. ACS Med. Chem. Lett. 2024;15:1997–2004. doi: 10.1021/acsmedchemlett.4c00419. PubMed DOI PMC

Yuvraj K.C., Singh A., Datta S., Das R., Saxena P.R., Chapagain S., Nitz T.J., Wild C., Gaur R. C-28 linker length modulates the activity of second-generation HIV-1 maturation inhibitors. Virol. J. 2025;22:20. doi: 10.1186/s12985-025-02695-w. PubMed DOI PMC

Kern J.S., Sprecher E., Fernandez M.F., Schauer F., Bodemer C., Cunningham T., Löwe S., Davis C., Sumeray M., Bruckner A.L., et al. Efficacy and safety of oleogel-S10 (birch triterpenes) for epidermolysis bullosa: Results from the phase III randomized double-blind phase of the EASE study. Br. J. Dermatol. 2023;188:12–21. doi: 10.1093/bjd/ljac001. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...