Selected Pentacyclic Triterpenoids and Their Derivatives as Biologically Active Compounds
Status In-Process Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
A1_FPBT_2024_003
University of Chemistry and Technology, Prague
PubMed
40807280
PubMed Central
PMC12348783
DOI
10.3390/molecules30153106
PII: molecules30153106
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial activity, antiviral activity, biological activity, cytotoxicity, nano-material, pentacyclic plant triterpenoid, signaling pathways, structural modifier,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Medicinal plants have been used in traditional medicines all over the world to treat human diseases throughout human history. Many of the medicinal plants have frequently become food and nutrition plants. A more sophisticated investigation resulted in discovering numbers of biologically important secondary metabolites of plants. Pentacyclic triterpenoids represent an important group of the plant secondary metabolites that have emerged as having top biological importance. While the most widespread plant triterpenoids and a majority of their semisynthetic derivatives have been reviewed quite often, other plant pentacyclic triterpenoids and their derivatives have so far been less frequently studied. Therefore, attention has been focused on selected pentacyclic triterpenoids, namely on arjunolic acid, asiatic acid, α- and β-boswellic acids, corosolic acid, maslinic acid, morolic acid, moronic acid, and the friedelane triterpenoids, and on different derivatives of the selected triterpenoids in this review article. A literature search was made in the Web of Science for the given keywords, covering the required area of secondary plant metabolites and their semisynthetic derivatives starting in 2023 and ending in February 2025. The most recently published findings on the biological activity of the selected triterpenoids, and on the structures and the biological activity of their relevant derivatives have been summarized therein. Even if cytotoxicity of the compounds has mainly been reviewed, other biological effects are mentioned if they appeared in the original articles in connection with the selected triterpenoids and their derivatives, listed above. A comparison of the effects of the parent plant products and their derivatives has also been made.
Zobrazit více v PubMed
Furtado N.A.J.C., Pirson L., Edelberg H., Miranda L.M., Loira-Pastoriza C., Preat V., Larondelle Y., Andre C.M. Pentacyclic triterpene bioavailability: An overview of in vitro and in vivo studies. Molecules. 2017;22:400. doi: 10.3390/molecules22030400. PubMed DOI PMC
Dutt R., Garg V., Khatri N., Madan A.K. Phytochemicals an anticancer drug development. Anti-Cancer Agents Med. Chem. 2019;19:172–183. doi: 10.2174/1871520618666181106115802. PubMed DOI
Torre L.A., Siegel R.L., Ward E.M., Jemal A. Global cancer incidence and mortality rates and trends—An update. Cancer Epidemiol. Biomark. Prev. 2016;25:16–27. doi: 10.1158/1055-9965.EPI-15-0578. PubMed DOI
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. PubMed DOI
Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer statistics. CA Cancer J. Clin. 2021;71:7–33. PubMed
Falzone L., Salomone S., Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol. 2018;9:1300. doi: 10.3389/fphar.2018.01300. PubMed DOI PMC
Li K., Zhang Z., Mei Y., Li M., Yang Q., Wu Q., Yang H., He L., Liu S. Targeting the innate immune system with nanoparticles for cancer immunotherapy. J. Mater. Chem. B. 2022;10:1709–1733. doi: 10.1039/D1TB02818A. PubMed DOI
Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Liu Y., Yang L., Wang H., Xiong Y. Recent advances in antiviral activities of triterpenoids. Pharmaceuticals. 2022;15:1169. doi: 10.3390/ph15101169. PubMed DOI PMC
Vasan N., Baselga J., Hyman D.M. A view on drug resistance in cancer. Nature. 2019;575:299–309. doi: 10.1038/s41586-019-1730-1. PubMed DOI PMC
Newman D.J., Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020;83:770–803. doi: 10.1021/acs.jnatprod.9b01285. PubMed DOI
Ghirga F., Quaglio D., Mori M., Cammarone S., Iazzetti A., Goggiamani A., Ingallina C., Botta B., Calcaterra A. A unique high-diversity natural product collection as a reservoir of new therapeutic leads. Org. Chem. Front. 2021;8:996–1025. doi: 10.1039/D0QO01210F. DOI
Zhong Z., Vong C.T., Chen F., Tan H., Zhang C., Wang N., Cui L., Wang Y., Feng Y. Immunomodulatory potential of natural products from herbal medicines as immune checkpoints inhibitors: Helping to fight against cancer via multiple targets. Med. Res. Rev. 2022;42:1246–1279. doi: 10.1002/med.21876. PubMed DOI PMC
Cui J., Qian J., Chow L.M.-C., Jia J. Natural products targeting cancer stem cells: A revisit. Curr. Med. Chem. 2021;28:6773–6804. doi: 10.2174/0929867328666210405111913. PubMed DOI
Salvador J.A.R., Leal A.S., Valdeira A.S., Goncalves B.M.F., Alho D.P.S., Figueiredo S.A.C., Silvestre S.M., Mendes V.I.S. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur. J. Med. Chem. 2017;142:95–130. doi: 10.1016/j.ejmech.2017.07.013. PubMed DOI
Valdeira A.S.C., Darvishi E., Woldemichael G.M., Beutler J.A., Gustafson K.R., Salvador J.A.R. Madecassic acid derivatives as potential anticancer agents: Synthesis and cytotoxic evaluation. J. Nat. Prod. 2019;82:2094–2105. doi: 10.1021/acs.jnatprod.8b00864. PubMed DOI PMC
Hodon J., Borkova L., Pokorny J., Kazakova A., Urban M. Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. Eur. J. Med. Chem. 2019;182:111653. doi: 10.1016/j.ejmech.2019.111653. PubMed DOI
Brandes B., Hoenke S., Fischer L., Csuk R. Design, synthesis and cytotoxicity of BODIPY FL labelled triterpenoids. Eur. J. Med. Chem. 2020;185:111858. doi: 10.1016/j.ejmech.2019.111858. PubMed DOI
Kamble S.M., Goyal S., Pati C.R. Multifunctional pentacyclic triterpenoids as adjuvants in cancer chemotherapy: A review. RSC Adv. 2014;4:33370–33382. doi: 10.1039/C4RA02784A. DOI
Wang Y., Luo Z., Zhou D., Wang X., Chen J., Gong S., Yu Z. Nano-assembly of ursolic acid with platinum prodrug overcomes multiple deactivation pathways in platinum-resistant ovarian cancer. Biomater. Sci. 2021;9:4110–4119. doi: 10.1039/D1BM00087J. PubMed DOI
Khan M.W., Zou C., Hassan S., Din F.U., Abdoul Razak M.Y., Nawaz A., Zeb A., Wahab A., Bangash S.A. Cisplatin and oleanolic acid Co-loaded pH-sensitive CaCO3 nanoparticles for synergistic chemotherapy. RSC Adv. 2022;12:14808–14818. doi: 10.1039/D2RA00742H. PubMed DOI PMC
Wang W.-Y., Yang Z.-H., Li A.-L., Liu Q.-S., Sun Y., Gu W. Design, synthesis, anticancer activity and mechanism studies of novel 2-amino-4-aryl-pyrimidine derivatives of ursolic acid. New J. Chem. 2022;46:2335–2350. doi: 10.1039/D1NJ05294B. DOI
Kujawski J., Popielarska H., Myka A., Drabinska B., Bernard M.K. The log P parameter as a molecular descriptor in the computer-aided drug design—An overview. Comp. Methods Sci. Technol. 2012;18:81–88. doi: 10.12921/cmst.2012.18.02.81-88. DOI
Zhao R., Kalvass J.C., Pollack G.M. Assessment of blood-brain barrier permeability using the in situ mouse brain perfusion technique. Pharm. Res. 2009;26:1657–1664. doi: 10.1007/s11095-009-9876-4. PubMed DOI
Kalani K., Yadav D.K., Khan F., Srivastava S.K., Suri N. Pharmacophore, QSAR, and ADME based semisynthesis and in vitro evaluation of ursolic acid analogs for anticancer activity. J. Mol. Model. 2012;18:3389–3413. doi: 10.1007/s00894-011-1327-6. PubMed DOI
Moralev A.D., Zenkova M.A., Markov A.V. Complex inhibitory activity of pentacyclic triterpenoids against cutaneous melanoma in vitro and in vivo: A literature review and reconstruction of their melanoma-related protein interactome. ACS Pharmacol. Transl. Sci. 2024;7:3358–3384. doi: 10.1021/acsptsci.4c00422. PubMed DOI PMC
Zhou M., Zhang R.-H., Wang M., Xu G.-B., Liao S.-G. Prodrugs of triterpenoids and their derivatives. Eur. J. Med. Chem. 2017;131:222–236. doi: 10.1016/j.ejmech.2017.03.005. PubMed DOI
de Souza A.M., de Oliveira C.F., de Oliveira V.B., Betim F.C.M., Miguel O.G., Miguel M.D. Traditional uses, phytochemistry, and antimicrobial activities of Eugenia species—A review. Planta Med. 2018;84:1232–1248. doi: 10.1055/a-0656-7262. PubMed DOI
Morparia S., Mehta C., Suvarna V. Recent advancements of betulinic acid-based drug delivery systems for cancer therapy (2002–2023) Nat. Prod. Res. 2024;39:3260–3280. doi: 10.1080/14786419.2024.2412838. PubMed DOI
Bravo-Alfaro D.A., Ochoa-Rodriguez L.R., Prokhorov Y., Perez-Robles J.F., Sampieri-Moran J.M., Garcia-Casillas P.E., Paul S., Garcia H.S., Luna-Barcenas G. Nanoemulsions of betulinic acid stabilized with modified phosphatidylcholine increase the stability of the nanosystems and the drug’s bioavailability. Colloids Surf. B Biointerfaces. 2025;245:114291. doi: 10.1016/j.colsurfb.2024.114291. PubMed DOI
Patel J., Prajapati D., Dodiya T., Chitte K.M. Review on oleanolic acid: Extraction techniques, analytical methods and pharmacology. Adv. Pharmacol. Pharm. 2025;13:50–62. doi: 10.13189/app.2025.130106. DOI
Yang W., Chen X., Li Y., Guo S., Wang Z., Yu X. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun. 2020;15:1–13. doi: 10.1177/1934578X20903555. DOI
Luginina J., Kroškins V., Lacis R., Fedorovska E., Demir Ö., Dubnika A., Loca D., Turks M. Synthesis and preliminary cytotoxicity evaluation of water soluble pentacyclic triterpenoid phosphonates. Sci. Rep. 2024;14:28031. doi: 10.1038/s41598-024-76816-w. PubMed DOI PMC
Zhang H., Guo J., Hu J., Zhou M. Terpenoid-based supramolecular materials: Fabrications, performances, applications. Supramol. Chem. 2023;34:105–131. doi: 10.1080/10610278.2023.2260044. DOI
Bildziukevich U., Wimmerová M., Wimmer Z. Saponins of selected triterpenoids as potential therapeutic agents: A review. Pharmaceuticals. 2023;16:386. doi: 10.3390/ph16030386. PubMed DOI PMC
Özdemir Z., Nonappa, Wimmer Z. Triterpenoid building blocks for functional nanoscale assemblies: A review. ACS Appl. Nano Mater. 2022;5:16264–16277. doi: 10.1021/acsanm.2c03304. DOI
Özdemir Z., Wimmer Z. Selected plant triterpenoids and their amide derivatives in cancer treatment: A review. Phytochem. 2022;203:113340. doi: 10.1016/j.phytochem.2022.113340. PubMed DOI
Bildziukevich U., Özdemir Z., Wimmer Z. Recent achievements in medicinal and supramolecular chemistry of betulinic acid and its derivatives. Molecules. 2019;24:3546. doi: 10.3390/molecules24193546. PubMed DOI PMC
Li W., Xing Q., Liu Z., Liu R., Hu Y., Yan Q., Liu X., Zhang J. The signaling pathways of traditional Chinese medicine in treating diabetic retinopathy. Front. Pharmacol. 2023;14:1165649. doi: 10.3389/fphar.2023.1165649. PubMed DOI PMC
Yousefian M., Hosseinzadeh H., Hayes A.W., Hadizadeh F., Karimi G. The protective effect of natural compounds on doxorubicin-induced cardiotoxicity via nicotinamide adenine dinucleotide phosphate oxidase inhibition. J. Pharm. Pharmacol. 2022;74:351–359. doi: 10.1093/jpp/rgab109. PubMed DOI
Liu S., Liu H., Zhang L., Ma C., El-Aty A.M.A. Edible pentacyclic triterpenes: A review of their sources, bioactivities, bioavailability, self-assembly behavior, and emerging applications as functional delivery vehicles. Crit. Rev. Food Sci. Nutr. 2024;64:5203–5219. doi: 10.1080/10408398.2022.2153238. PubMed DOI
Duy N.D., Bang N.A., Yen P.H., Trang D.T., Trang B.T.N., Thuy N.T.K., Cuc N.T., Nhiem N.X., Kiem P.V., Ban N.K., et al. Four new pentacyclic triterpene glycosides isolated from the fruits of Cryptolepis buchananii R.Br. ex Roem. & Schult and their inhibition of NO production in LPS-activated RAW264.7 cells. Chem. Biodivers. 2023;20:e202301683. PubMed
Olanipekun B.E., Ponnapalli M.G., Patel H.K., Munipalle K., Shaik K. Design, synthesis of new phenyl acetylene and isoxazole analogues of arjunolic acid as potent tyrosinase and alpha glucosidase inhibitors. Nat. Prod. Res. 2023;37:1092–1097. doi: 10.1080/14786419.2021.1986817. PubMed DOI
Bhujel M., Sripada L., Buvanesvaragurunathan K., Perumal P., Jain D., Pandey N., Bajaj A., Golakoti N.R. Synthesis and anti-cancer activity of acetals of arjunolic acid. New J. Chem. 2024;48:16957–16967. doi: 10.1039/D4NJ03095H. DOI
Goncalves B.M.F., Mendes V.I.S., Silvestre S.M., Salvador J.A.R. Design, synthesis, and biological evaluation of new arjunolic acid derivatives as anticancer agents. RSC Med. Chem. 2023;14:313–331. doi: 10.1039/D2MD00275B. PubMed DOI PMC
Zhou Z., Nan Y., Li X., Ma M., Du Y., Chen G., Ning N., Huang S., Gu Q., Li W., et al. Hewthorn with “homology of medicine and food”: A review of anticancer effects and mechanisms. Front. Pharmacol. 2024;15:1384189. PubMed PMC
Magyari-Pavel I.Z., Moaca E.-A., Avram S., Diaconeasa Z., Haidu D., Stefanut M.N., Rostas A.M., Muntean D., Bora L., Badescu B., et al. Antioxidant extracts from Greek and Spanish olive leaves: Antimicrobial, anticancer and antiangiogenic effects. Antioxidants. 2024;13:774. doi: 10.3390/antiox13070774. PubMed DOI PMC
Tchetan E., Ortiz S., Olounlade P.A., Azando E.V.B., Avril C., Demblon D., Hounzangbe-Adote S.M., Gbaguidi F.A., Quetin-Leclercq J. Antitrypanosomal activity of Crossopteryx febrifuga and phytochemical profiling using LC-MS/MS analysis coupled to molecular network and SIRIUS. Fitoterapia. 2024;179:106255. doi: 10.1016/j.fitote.2024.106255. PubMed DOI
Hasan S.N., Banerjee J., Patra S., Kar S., Das S., Samanta S., Wanigasekera D., Pavithra U., Wijesekera K., Napagoda M., et al. Self-assembled renewable nano-sized pentacyclic triterpenoid maslinic acids in aqueous medium for anti-leukemic, antibacterial and biocompatibility studies: An insight into targeted proteins-compound interactions based mechanistic pathway prediction through molecular docking. Int. J. Biol. Macromol. 2023;245:125416. PubMed
Deng J., Wang H., Mu X., He X., Zhao F., Meng Q. Advances in research on the preparation and biological activity of maslinic acid. Mini Rev. Med. Chem. 2021;21:79–89. doi: 10.2174/1389557520666200722134208. PubMed DOI
Alam S., Khan F. 3D-QSAR studies on maslinic acid analogs for anticancer activity against breast cancer cell line MCF-7. Sci. Rep. 2017;7:6019. doi: 10.1038/s41598-017-06131-0. PubMed DOI PMC
Majumdar R., Tantayanon S., Bag B.G. A novel trihybrid material based on renewables: An efficient recyclable heterogeneous catalyst for C–C coupling and reduction reactions. Chem. Asian J. 2016;11:2406–2414. doi: 10.1002/asia.201600773. PubMed DOI
Bag B.G., Hasan S.N., Ghorai S., Panja S.K. First self-assembly of dihydroxy triterpenoid maslinic acid yielding vesicles. ACS Omega. 2019;4:7684–7769. doi: 10.1021/acsomega.8b03667. DOI
Yan R., Liu L., Huang X., Quan Z.-S., Shen Q.-K., Guo H.-Y. Bioactivities and structure-activity relationships of maslinic acid derivatives: A review. Chem. Biodivers. 2024;21:e202301327. doi: 10.1002/cbdv.202301327. PubMed DOI
Reinhardt J.K., Schertler L., Bussmann H., Sellner M., Smiesko M., Boonen G., Potterat O., Hamburger M., Butterweck V. Vitex agnus castus extract Ze 440: Diterpene and triterpene’s interactions with dopamine D2 receptor. Int. J. Mol. Sci. 2024;25:11456. doi: 10.3390/ijms252111456. PubMed DOI PMC
Denner T.C., Heise N.V., Serbian I., Angeli A., Supuran C.T., Csuk R. An asiatic acid derived trisulfamate acts as a nanomolar inhibitor of human carbonic anhydrase VA. Steroids. 2024;205:109381. doi: 10.1016/j.steroids.2024.109381. PubMed DOI
Aspatwar A., Supuran C.T., Waheed A., Sly W.S., Parkkila S. Mitochondrial carbonic anhydrase VA and VB: Properties and roles in health and disease. J. Physiol. 2023;601:257–274. doi: 10.1113/JP283579. PubMed DOI PMC
Supuran C.T. Carbonic anhydrase inhibitors: An update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin. Investig. Drugs. 2021;30:1197–1208. doi: 10.1080/13543784.2021.2014813. PubMed DOI
Supuran C.T. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg. Med. Chem. Lett. 2023;93:129411. doi: 10.1016/j.bmcl.2023.129411. PubMed DOI
Spivak A.Y., Kuzmina U.S., Nedopekina D.A., Dubinin M.V., Khalitova R.R., Davletshin E.V., Vakhitova Y.V., Belosludtsev K.N., Vakhitov V.A. Synthesis and comparative analysis of the cytotoxicity and mitochondrial effects of triphenylphosphonium and F16 maslinic and corosolic acid hybrid derivatives. Steroids. 2024;209:109471. doi: 10.1016/j.steroids.2024.109471. PubMed DOI
Hoenke S., Heise N.V., Kahnt M., Deigner H.-P., Csuk R. Betulinic acid derived amides are highly cytotoxic, apoptotic and selective. Eur. J. Med. Chem. 2020;207:112815. doi: 10.1016/j.ejmech.2020.112815. PubMed DOI
Heise N., Lehmann F., Csuk R., Mueller T. Targeted theranostics: Near-infrared triterpenoic acid-rhodamine conjugates as prerequisites for precise cancer diagnosis and therapy. Eur. J. Med. Chem. 2023;259:115663. doi: 10.1016/j.ejmech.2023.115663. PubMed DOI
Heise N.V., Csuk R., Mueller T. (Iso)quinoline amides derived from corosolic acid exhibit high cytotoxicity, and the potential for overcoming drug resistance in human cancer cells. Eur. J. Med. Chem. Rep. 2024;12:100198. doi: 10.1016/j.ejmcr.2024.100198. DOI
Choudhary N., Singh N., Singh A.P., Singh A.P. Medicinal uses of maslinic acid: A review. J. Drug Deliv. Therapeut. 2021;11:237–240. doi: 10.22270/jddt.v11i2.4588. DOI
Heise N.V., Hoenke S., Serbian I., Csuk R. An improved partial synthesis of corosolic acid and its conversion to highly cytotoxic mitocans. Eur. J. Med. Chem. Rep. 2022;6:100073. doi: 10.1016/j.ejmcr.2022.100073. DOI
Gehrke I.T.S., Neto A.T., Pedroso M., Mostardeiro C.P., Da Cruz I.B.M., Silva U.F., Ilha V., Dalcol I.I., Morel A.F. Antimicrobial activity of Schinus lentiscifolius (Anacardiaceae) J. Ethnopharmacol. 2013;148:486–491. doi: 10.1016/j.jep.2013.04.043. PubMed DOI
Cao S., Guza R.C., Miller J.S., Andriantsiferana R., Rasamison V.E., Kingston D.G.I. Cytotoxic triterpenoids from Acridocarpus vivy from the Madagascar rain forest. J. Nat. Prod. 2004;67:986–989. doi: 10.1021/np040058h. PubMed DOI
Chang F.-R., Hsieh Y.-C., Chang Y.-F., Lee K.-H., Wu Y.-C., Chang L.-K. Inhibition of the Epstein-Barr virus lytic cycle by moronic acid. Antivir. Res. 2010;85:490–495. doi: 10.1016/j.antiviral.2009.12.002. PubMed DOI
Osorio A.A., Munoz A., Torres-Romero D., Bedoya L.M., Perestelo N.R., Jimenez I.A., Alcami J., Bazzocchi I.L. Olean-18-ene triterpenoids from Celastraceae species inhibit HIV replication targeting NF-κB and Sp1 dependent transcription. Eur. J. Med. Chem. 2012;52:295–303. doi: 10.1016/j.ejmech.2012.03.035. PubMed DOI
Knorr R., Hamburger M. Quantitative analysis of anti-inflammatory and radical scavenging triterpenoid esters in evening primrose oil. J. Agric. Food Chem. 2004;52:3319–3324. doi: 10.1021/jf049949l. PubMed DOI
Zaugg J., Potterat O., Plescher A., Honermeier B., Hamburger M. Quantitative analysis of anti-inflammatory and radical scavenging triterpenoid esters in evening primrose seeds. J. Agric. Food Chem. 2006;54:6623–6628. doi: 10.1021/jf0611466. PubMed DOI
Ramirez-Espinosa J.J., Rios M.Y., Lopez-Martinez S., Lopez-Vallejo F., Medina-Franco J.L., Paoli P., Camici G., Navarrete-Vazquez G., Ortiz-Andrade R., Estrada-Soto S. Antidiabetic activity of some pentacyclic acid triterpenoids, role of PTP-1B: In vitro, in silico, and in vivo approaches. Eur. J. Med. Chem. 2011;46:2243–2251. doi: 10.1016/j.ejmech.2011.03.005. PubMed DOI
Ramirez-Espinosa J.J., Garcia-Jimenez S., Rios M.Y., Medina-Franco J.L., Lopez-Vallejo F., Webster S.P., Binnie M., Ibarra-Barajas M., Ortiz-Andrade R., Estrada-Soto S. Antihyperglycemic and sub-chronic antidiabetic actions of morolic and moronic acids, in vitro and in silico inhibition of 11β-HSD 1. Phytomedicine. 2013;20:571–576. doi: 10.1016/j.phymed.2013.01.013. PubMed DOI
Hostettmann-Kaldas M., Nakanishi K. Moronic acid, a simple triterpenoid keto acid with antimicrobial activity isolated from Ozoroa mucronata. Planta Med. 1979;37:358–360. doi: 10.1055/s-0028-1097349. PubMed DOI
Srisawat P., Yasumoto S., Fukushima E.O., Robertlee J., Seki H., Muranaka T. Production of the bioactive plant-derived triterpenoid morolic acid in engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 2020;117:2198–2208. doi: 10.1002/bit.27357. PubMed DOI
de Menezes R.P.B., Tavares J.F., Kato M.J., da Rocha Coelho F.A., Martin H.-J., Muratov E., dos Santos A.L.S., da Franca Rodrigues K.A., Scotti L., Scotti M.T. Annonaceae terpenoids as potential Leishmanicidal agents. Rev. Brasil. Farmacogn. 2022;32:741–748. doi: 10.1007/s43450-022-00296-0. DOI
de Souza V.M.R., Maciel N.B., Machado Y.A.A., de Souza J.M.S., Rodrigues R.R.L., dos Santos A.L.S., da Silva M.G.G., da Silva I.G.M., Barros-Cordeiro K.B., Bao S.N., et al. Anti-Leishmania amazonensis activity of morolic acid, a pentacyclic triterpene with effects on innate immune response during macrophage infection. Microorganisms. 2024;12:1392. doi: 10.3390/microorganisms12071392. PubMed DOI PMC
Chae S.I., Yi S.A., Nam K.H., Park K.J., Yun J., Kim K.H., Lee J., Han J.-W. Morolic acid 3-O-caffeate inhibits adipogenesis by regulating epigenetic gene expression. Molecules. 2020;25:5910. doi: 10.3390/molecules25245910. PubMed DOI PMC
Bildziukevich U., Šlouf M., Rárová L., Šaman D., Wimmer Z. Nano-assembly of cytotoxic amides of moronic and morolic acid. Soft Matter. 2023;19:7625–7634. doi: 10.1039/D3SM01035J. PubMed DOI
Bildziukevich U., Černá L., Trylčová J., Kvasnicová M., Rárová L., Šaman D., Lovecká P., Weber J., Wimmer Z. Amides of moronic acid and morolic acid with the tripeptides MAG and GAM targeting antimicrobial, antiviral and cytotoxic effects. RSC Med. Chem. 2025;16:801–811. doi: 10.1039/D4MD00742E. PubMed DOI PMC
Lehbili M., Magid A.A., Kabouche A., Voutquenne-Nazabadioko L., Abedini A., Morjani H., Sarazin T., Gangloff S.C., Kabouche Z. Oleanane-type triterpene saponins from Calendula stellata. Phytochemistry. 2017;144:33–42. doi: 10.1016/j.phytochem.2017.08.015. PubMed DOI
Yi Y., Li J., Lai X., Zhang M., Kuang Y., Bao Y.-O., Yu R., Hang W., Muturi E., Xue H., et al. Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. J. Adv. Res. 2022;36:201–210. doi: 10.1016/j.jare.2021.11.012. PubMed DOI PMC
Kciuk M., Garg A., Rohilla M., Chaudhary R., Dhankhar S., Dhiman S., Bansal S., Saini M., Singh T.G., Chauhan S., et al. Therapeutic potential of plant-derived compounds and plant extracts in rheumatoid arthritis—Comprehensive review. Antioxidants. 2024;13:775. doi: 10.3390/antiox13070775. PubMed DOI PMC
Gostynska A., Buzun K., Zolnowska I., Krajka-Kuzniak V., Mankowska-Wierzbicka D., Jelinska A., Stawny M. Natural bioactive compounds: The promising candidates for the treatment of intestinal failure-associated liver disease. Clin. Nutr. 2024;43:1952–1971. doi: 10.1016/j.clnu.2024.07.004. PubMed DOI
Karimi M., Vakili K., Rashidian P., Razavi-Amoli S.-K., Akhbari M., Kazemi K. Effect of boswellia (Boswellia serrata L.) supplementation on glycemic markers and lipid profile in type 2 diabetic patients: A systematic review and meta-analysis. Front. Clin. Diabetes Healthc. 2024;5:1466408. doi: 10.3389/fcdhc.2024.1466408. PubMed DOI PMC
Yadav J.P., Verma A., Pathak P., Dwivedi A.R., Singh A.K., Kumar P., Khalilullah H., Jaremko M., Emwas A.-H., Patel D.K. Phytoconstituents as modulators of NF-κB signalling: Investigating therapeutic potential for diabetic wound healing. Biomed. Pharmacother. 2024;177:117058. doi: 10.1016/j.biopha.2024.117058. PubMed DOI
Maouche A., Boumedienr K., Baugé C. Bioactive compounds in osteoarthritis: Molecular mechanisms and therapeutic roles. Int. J. Mol. Sci. 2024;25:11656. doi: 10.3390/ijms252111656. PubMed DOI PMC
Hussain H., Wang D., El-Seedi H.R., Rashan L., Ahmed I., Abbas M., Mamadalieva N.Z., Sultani H.N., Hussain M.I., Shah S.T.A. Therapeutic potential of boswellic acids: An update patent review (2016–2023) Exp. Opin. Ther. Patents. 2024;34:723–732. doi: 10.1080/13543776.2024.2369626. PubMed DOI
Cui N., Li M.-J., Wang Y.-W., Meng Q., Shi Y.-J., Ding Y. Boswellic acids: A review on its pharmacological properties, molecular mechanism and bioavailability. Trad. Med. Res. 2024;9:60. doi: 10.53388/TMR20240128002. DOI
Ur Rehman N., Rafiq K., Avula S.K., Gibbons S., Csuk R., Al-Harrasi A. Triterpenoids from Frankincense and Boswellia: A focus on their pharmacology and 13C-NMR assignments. Phytochemistry. 2025;229:114297. doi: 10.1016/j.phytochem.2024.114297. PubMed DOI
Kulawik-Pioro A., Gozdzicka W., Kruk J., Piotrowska A. Plant-origin additives from Boswellia species in emulgel formulation for radiotherapy skin care. Appl. Sci. 2024;14:8648. doi: 10.3390/app14198648. DOI
Joseph A., Abhilash M.B., Mulakal J.N., Madhavamenon K.I. Pharmacokinetics of a natural self-emulsifying reversible hybrid-hydrogel (N’SERH) formulation of full-spectrum Boswellia serrata oleo-gum resin extract: Randomised double-blinded placebo-controlled crossover study. Biol. Pharm. Bull. 2024;47:1583–1593. doi: 10.1248/bpb.b24-00306. PubMed DOI
Ale-Ahmad A., Kazemi S., Daraei A., Sepidarkish M., Moghadamnia A.A., Parsian H. pH-Sensitive nanoformulation of acetyl-11-keto-beta-boswellic acid (AKBA) as a potential antiproliferative agent in colon adenocarcinoma (in vitro and in vivo) Cancer Nanotechnol. 2024;15:49. doi: 10.1186/s12645-024-00289-9. DOI
Jawad M., Bhatia S., Al-Harrasi A., Ullah S., Halim S.A., Khan A., Koca E., Aydemir L.Y., Diblan S., Pratap-Singh A. Antimicrobial topical polymeric films loaded with acetyl-11-keto-β-boswellic acid (AKBA), boswellic acid and silver nanoparticles: Optimization, characterization, and biological activity. Heliyon. 2024;10:e31671. doi: 10.1016/j.heliyon.2024.e31671. PubMed DOI PMC
Solanki N., Kumar S., Seema, Dureja H. Antibacterial effects of bioactive boswellic acids loaded chitosan nanoparticles against Gram-positive and Gram-negative bacteria. Ind. J. Pharm. Edu. Res. 2024;58:1189–1197. doi: 10.5530/ijper.58.4.131. DOI
Karima S., Khatami S.H., Ehtiati S., Khoshtinatnikkhouy S., Kachouei R.A., Jaha-Abad A.J., Tafakhori A., Firoozpour H., Salmani F. Acetyl 11-keto beta-boswellic acid improves neurological functions in a mouse model of multiple sclerosis. Inflammation. 2024 doi: 10.1007/s10753-024-02176-2. Online ahead of print . PubMed DOI
Dong F., Zheng L., Zhang X. Alpha-boswellic acid accelerates acute wound healing via NF-κB signaling pathway. PLoS ONE. 2024;19:e0308028. doi: 10.1371/journal.pone.0308028. PubMed DOI PMC
Fahmy S.A., Sedky N.K., Hassan H.A.F.M., Abdel-Kader N.M., Mahdy N.K., Amin M.U., Preis E., Bakowsky U. Synergistic enhancement of carboplatin efficacy through pH-sensitive nanoparticles formulated using naturally derived Boswellia extract for colorectal cancer therapy. Pharmaceutics. 2024;16:1282. doi: 10.3390/pharmaceutics16101282. PubMed DOI PMC
Avula S.K., Ur Rehman N., Khan F., Alam T., Halim S.A., Khan A., Anwar M.U., Rahman S.M., Gibbons S., Csuk R., et al. New 1H-1,2,3-triazole analogues of boswellic acid are potential anti-breast cancer agents. J. Mol. Struct. 2025;1319:139447. doi: 10.1016/j.molstruc.2024.139447. DOI
Yu L., Xie X., Cao X., Chen J., Chen G., Chen Y., Li G., Qin J., Peng F., Peng C. The anticancer potential of maslinic acid and its derivatives: A review. Drug Des. Devel. Ther. 2021;15:3863–3879. doi: 10.2147/DDDT.S326328. PubMed DOI PMC
Rosellini M., Schulze A., Omer E.A., Ali N.T., Marini F., Kupper J.H., Efferth T. The effect of plastic-related compounds on transcriptome-wide gene expression on CYP2C19-overexpressing HepG2 cells. Molecules. 2023;28:5952. doi: 10.3390/molecules28165952. PubMed DOI PMC
Singh S.K., Shrivastava S., Mishra A.K., Kumar D., Pandey V.K., Srivastava P., Pradhan B., Behera B.C., Bahuguna A., Baek K.-H. Friedelin: Structure, biosynthesis, extraction, and its potential health impact. Molecules. 2023;28:7760. doi: 10.3390/molecules28237760. PubMed DOI PMC
Anokwah D., Asante-Kwatia E., Asante J., Obeng-Mensah D., Danquah C.A., Amponsah I.K., Ameyaw E.O., Biney R.P., Obese E., Oberer L., et al. Antibacterial, resistance, modulation, anti-biofilm formation, and efflux pump inhibition properties of Loeseneriella africana (Willd.) N. Halle (Celastraceae) stem extract and its constituents. Microorganisms. 2024;12:7. doi: 10.3390/microorganisms12010007. PubMed DOI PMC
Teclegeorgish Z.W., Mokgalaka N.S., Kemboi D., Krause R.W.M., Siwe-Noundou X., Nyemba G.R., Davison C., de la Mare J.-A., Tembu V.J. Phytochemicals from Pterocarpus angolensis DC and their cytotoxic activities against breast cancer cells. Plants. 2024;13:301. doi: 10.3390/plants13020301. PubMed DOI PMC
Nguyen T.T., Cao D.T., Tran H.N., Nguyen T.H., Pham G.D., Tran V.H., Pham Q.D., Tran T.T.T., Vu M.T., Vu D.H. Pentacyclic triterpenes from the leaves of Camellia hakodae Ninh. Nat. Prod. Res. 2025;39:3787–3792. doi: 10.1080/14786419.2024.2315597. PubMed DOI
Oliveira L.R., Vidal D.M., Freitas T.R., de P. Sabino A., Duarte L.P., de Sousa G.F. Synthesis and cytotoxic activity of friedelinyl esters. Chem. Biodivers. 2024;21:e202400652. doi: 10.1002/cbdv.202400652. PubMed DOI
Smith P.F., Ogundele A., Forrest A., Wilton J., Salzwedel K., Doto J., Allaway G.P., Martin D.E. Phase I and II study of the safety, virologic effect, and pharmacokinetics/pharmacodynamics of single-dose 3-O-(3′,3′-dimethylsuccinyl)betulinic acid (bevirimat) against human immunodeficiency virus infection. Antimicrob. Agents Chemother. 2007;51:3574–3581. doi: 10.1128/AAC.00152-07. PubMed DOI PMC
Martin D.E., Blum R., Doto J., Galbraith H., Ballow C. Multiple-dose pharmacokinetics and safety of bevirimat, a novel inhibitor of HIV maturation, in healthy volunteers. Clin. Pharmacokinet. 2007;46:589–598. doi: 10.2165/00003088-200746070-00004. PubMed DOI
Fulda S. Betulinic acid for cancer treatment and prevention. Int. J. Mol. Sci. 2008;9:1096–1107. doi: 10.3390/ijms9061096. PubMed DOI PMC
Wimmerová M., Bildziukevich U., Wimmer Z. Selected plant triterpenoids and their derivatives as antiviral agents. Molecules. 2023;28:7718. doi: 10.3390/molecules28237718. PubMed DOI PMC
Sit S.-Y., Chen Y., Chen J., Venables B.L., Swidorski J.J., Xu L., Sin N., Hartz R.A., Lin Z., Zhang S., et al. Invention of VH-937, a potent HIV-1 maturation inhibitor with the potential for infrequent oral dosing in humans. ACS Med. Chem. Lett. 2024;15:1997–2004. doi: 10.1021/acsmedchemlett.4c00419. PubMed DOI PMC
Yuvraj K.C., Singh A., Datta S., Das R., Saxena P.R., Chapagain S., Nitz T.J., Wild C., Gaur R. C-28 linker length modulates the activity of second-generation HIV-1 maturation inhibitors. Virol. J. 2025;22:20. doi: 10.1186/s12985-025-02695-w. PubMed DOI PMC
Kern J.S., Sprecher E., Fernandez M.F., Schauer F., Bodemer C., Cunningham T., Löwe S., Davis C., Sumeray M., Bruckner A.L., et al. Efficacy and safety of oleogel-S10 (birch triterpenes) for epidermolysis bullosa: Results from the phase III randomized double-blind phase of the EASE study. Br. J. Dermatol. 2023;188:12–21. doi: 10.1093/bjd/ljac001. PubMed DOI