Selected Plant Triterpenoids and Their Derivatives as Antiviral Agents
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
FV30300
Ministry of Industry and Commerce, Czech Republic (MPO)
PubMed
38067449
PubMed Central
PMC10707653
DOI
10.3390/molecules28237718
PII: molecules28237718
Knihovny.cz E-zdroje
- Klíčová slova
- HIV-1, HSV-1, antiviral activity, maturation inhibitor, plant triterpenoid, structure modifier,
- MeSH
- antivirové látky farmakologie MeSH
- kyselina betulinová MeSH
- pentacyklické triterpeny farmakologie MeSH
- rostliny MeSH
- triterpeny * farmakologie chemie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- bevirimat MeSH Prohlížeč
- kyselina betulinová MeSH
- pentacyklické triterpeny MeSH
- triterpeny * MeSH
The results of the most recent investigation of triterpenoid-based antiviral agents namely in the HIV-1 and HSV-1 treatment were reviewed and summarized. Several key historical achievements are included to stress consequences and continuity in this research. Most of the agents studied belong to a series of compounds derived from betulin or betulinic acid, and their synthetic derivative is called bevirimat. A termination of clinical trials of bevirimat in Phase IIb initiated a search for more successful compounds partly derived from bevirimat or designed independently of bevirimat structure. Surprisingly, a majority of bevirimat mimics are derivatives of betulinic acid, while other plant triterpenoids, such as ursolic acid, oleanolic acid, glycyrrhetinic acid, or other miscellaneous triterpenoids, are relatively rarely involved in a search for a novel antiviral agent. Therefore, this review article is divided into three parts based on the leading triterpenoid core structure.
Zobrazit více v PubMed
Liu Y., Yang L., Wang H., Xiong Y. Recent advances in antiviral activities of triterpenoids. Pharmaceuticals. 2022;15:1169. doi: 10.3390/ph15101169. PubMed DOI PMC
Sander W.J., O’Neill H.G., Pohl C.H. Prostaglandin E(2) as a modulator of viral infections. Front. Physiol. 2017;8:89. doi: 10.3389/fphys.2017.00089. PubMed DOI PMC
He W., Gao Y., Wen Y., Ke X., Ou Z., Li Y., He H., Chen Q. Detection of virus-related sequences associated with potential etiologies of hepatitis in liver tissue samples from rats, mice, shrews, and bats. Front. Microbiol. 2021;12:653873. doi: 10.3389/fmicb.2021.653873. PubMed DOI PMC
Yang X.W. Antiviral effect of glycyrrhizic acid. Mod. Chin. Med. 2020;22:533–541.
Yang J., Yue L., Yang Z., Miao Y., Ouyang R., Hu Y. Metal-based nanomaterials: Work as drugs and carriers against viral infections. Nanomaterials. 2021;11:2129. doi: 10.3390/nano11082129. PubMed DOI PMC
Finsterer J. Neurological side effects of SARS-CoV-2 vaccinations. Acta Neurol. Scand. 2022;145:5–9. doi: 10.1111/ane.13550. PubMed DOI PMC
Hacisuleyman E., Hale C., Saito Y., Blachere N.E., Bergh M., Conlon E.G., Schaefer-Babajew D.J., DaSilva J., Muecksch F., Gaebler C., et al. Vaccine breakthrough infections with SARS-CoV-2 variants. N. Engl. J. Med. 2021;384:2212–2218. doi: 10.1056/NEJMoa2105000. PubMed DOI PMC
Yi Y., Li J., Lai X., Zhang M., Kuang Y., Bao Y.-O., Yu R., Hong W., Muturi E., Xue H., et al. Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. J. Adv. Res. 2022;36:201–210. doi: 10.1016/j.jare.2021.11.012. PubMed DOI PMC
Pu J.Y., He L., Wu S.Y., Zhang P., Huang X. Anti-virus research of triterpenoids in licorice. Chin. J. Virol. 2013;29:673–679. PubMed
Pornillos O., Ganser-Pornillos B.K. Maturation of retroviruses. Curr. Opin. Virol. 2019;36:47–55. doi: 10.1016/j.coviro.2019.05.004. PubMed DOI PMC
Kanamoto T., Kashiwada Y., Kanbara K., Gotoh K., Yoshimori M., Goto T., Sano K., Nakashima H. Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation. Antimicrob. Agents Chemother. 2001;45:1225–1230. doi: 10.1128/AAC.45.4.1225-1230.2001. PubMed DOI PMC
Zhou J., Yuan X., Dismuke D., Forshey B.M., Lundquist C., Lee K.-H., Aiken C., Chen C.H. Small-molecule inhibition of human immunodeficiency virus type 1 replication by specific targeting of the final step of virion maturation. J. Virol. 2004;78:922–929. doi: 10.1128/JVI.78.2.922-929.2004. PubMed DOI PMC
Adamson C.S., Ablan S.D., Boeras I., Goila-Gaur R., Soheilian F., Nagashima K., Li F., Salzwedel K., Sakalian M., Wild C.T., et al. In vitro resistance to the human immunodeficiency virus type 1 maturation inhibitor PA-457 (Bevirimat) J. Virol. 2006;80:10957–10971. doi: 10.1128/JVI.01369-06. PubMed DOI PMC
Pak A.J., Purdy M.D., Yeager M., Voth G.A. Preservation of HIV-1 gag helical bundle symmetry by bevirimat is central to maturation inhibition. J. Am. Chem. Soc. 2021;143:19137–19148. doi: 10.1021/jacs.1c08922. PubMed DOI PMC
Purdy M.D., Shi D., Christowicz J., Hattne J., Goner T., Yeager M. MicroED structures of HIV-1GagCTD-SP1 reveal binding interactions with the maturation inhibitor bevirimat. Proc. Natl. Acad. Sci. USA. 2018;115:13258–13263. doi: 10.1073/pnas.1806806115. PubMed DOI PMC
Adamson C.S., Salzwedel K., Freed E.O. Virus maturation as a new HIV-1 therapeutic target. Expert Opin. Ther. Targets. 2009;13:895–908. doi: 10.1517/14728220903039714. PubMed DOI PMC
Hashimoto F., Kashiwada Y., Cosentino L.M., Chen C.-H., Garrett P.E., Lee K.-H. Anti-AIDS agents-XXVII. Synthesis and anti-HIV activity of betulinic acid and dihydrobetulinic acid derivatives. Bioorg. Med. Chem. 1997;5:2133–2143. doi: 10.1016/S0968-0896(97)00158-2. PubMed DOI
Lee K.-H. Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J. Nat. Prod. 2010;73:500–516. doi: 10.1021/np900821e. PubMed DOI PMC
Van Baelen K., Salzwedel K., Rondelez E., Van Eygen V., De Vos S., Verheyen A., Steegen K., Verlinden Y., Allaway G.P., Stuyver L.J. Susceptibility of human immunodeficiency virus type 1 to the maturation inhibitor bevirimat is modulated by baseline polymorphisms in gag spacer peptide 1. Antimicrob. Agents Chemother. 2009;53:2185–2188. doi: 10.1128/AAC.01650-08. PubMed DOI PMC
Adamson C.S., Sakalian M., Salzwedel K., Freed E.O. Polymorphisms in Gag spacer peptide 1 confer varying levels of resistance to the HIV-1 maturation inhibitor bevirimat. Retrovirology. 2010;7:36. doi: 10.1186/1742-4690-7-36. PubMed DOI PMC
Liu X., Main D., Ma Y., He B. Herpes simplex virus 1 inhibits TANK-binding kinase 1 through formation of the Us11-Hsp90 complex. J. Virol. 2018;92:e00402-18. doi: 10.1128/JVI.00402-18. PubMed DOI PMC
Whitley R.J. Herpes simplex encephalitis: Adolescents and adults. Antivir. Res. 2006;71:141–148. doi: 10.1016/j.antiviral.2006.04.002. PubMed DOI
Navid M.H., Laszczyk-Lauer M.N., Reichling J., Schnitzler P. Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication. Phytomedicine. 2014;21:1273–1280. doi: 10.1016/j.phymed.2014.06.007. PubMed DOI
Ye J., Wang Z., Jia J., Li F., Wang Y., Jiang Y., Wang Y., Ren Z., Pu H. Lupeol impairs herpes simplex virus type 1 replication by inhibiting the promoter activity of the viral immediate early gene α0. Acta Virol. 2021;65:254–263. doi: 10.4149/av_2021_302. PubMed DOI
Ramu R., Shirahatti P.S., Swamy S.N., Zameer F., Dhananjaya B.L., Prasad M.N.N. Assessment of in vivo antidiabetic properties of umbelliferone and lupeol constituents of banana (Musa sp. var. Nanjangud Rasa Bale) flower in hyperglycaemic rodent model. PLoS ONE. 2016;11:e0151135. PubMed PMC
Kolokotronis A., Doumas S. Herpes simplex virus infection, with particular reference to the progression and complications of primary herpetic gingivostomatitis. Clin. Microbiol. Infect. 2006;12:202–211. doi: 10.1111/j.1469-0691.2005.01336.x. PubMed DOI
Coen D.M., Schaffer P.A. Anti-herpesvirus drugs: A promising spectrum of new drugs and drug targets. Nat. Rev. Drug. Discov. 2003;2:278–288. doi: 10.1038/nrd1065. PubMed DOI
Pecak P., Orzechowska B., Chrobak E., Boryczka S. Novel betulin dicarboxylic acid ester derivatives as potent antiviral agents: Design, synthesis, biological evaluation, structure-activity relationship and in silico study. Eur. J. Med. Chem. 2021;225:113738. doi: 10.1016/j.ejmech.2021.113738. PubMed DOI
Amiri S., Dastghaib S., Ahmadi M., Mehrbod P., Khadem F., Behrouj H., Aghanoori M.R., Machaj F., Ghamsari M., Rosik J., et al. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol. Adv. 2020;38:107409. doi: 10.1016/j.biotechadv.2019.06.008. PubMed DOI
Kazakova O.B., Medvedeva N.I., Baikova I.P., Tolstikov G.A., Lopatina T.V., Yunusov M.S., Zaprutko L. Synthesis of triterpenoid acylates: Effective reproduction inhibitors of influenza A (H1N1) and papilloma viruses. Russ. J. Bioorg. Chem. 2010;36:771–778. doi: 10.1134/S1068162010060142. PubMed DOI PMC
Pavlova P.I., Savinova O.V., Nikolaeva S.N., Boreko E.I., Flekhter O.B. Antiviral activity of betulin, betulinic and betulonic acids against some enveloped and non-enveloped viruses. Fitoterapia. 2003;74:489–492. doi: 10.1016/S0367-326X(03)00123-0. PubMed DOI
Sun I.C., Shen J.K., Wang H.K., Cosentino L.M., Lee K.H. Anti-AIDS agents. 32. Synthesis and anti-HIV activity of betulin derivatives. Bioorg. Med. Chem. Lett. 1998;8:1267–1272. doi: 10.1016/S0960-894X(98)00202-9. PubMed DOI
Šarek J., Kvasnica M., Vlk M., Urban M., Džubák P., Hajdúch M. The potential of triterpenoids in the treatment of melanoma. In: Murph M., editor. Research on Melanoma—A Glimpse into Current Directions and Future Trends. InTech; Rijeka, Croatia: 2011. pp. 125–158. Chapter 7.
Kim D.S.H.L., Chen Z., Nguyen V.T., Pezzuto J.M., Qiu S., Lu Z.-Z. A concise semi-synthetic approach to betulinic acid from betulin. Synth. Commun. 1997;27:1607–1612. doi: 10.1080/00397919708006099. DOI
Alakurtti S., Mäkelä T., Koskimies S., Yli-Kauhaluoma J. Pharmacological properties of the ubiquitous natural product betulin. J. Eur. Pharm. Sci. 2006;29:1–13. doi: 10.1016/j.ejps.2006.04.006. PubMed DOI
Bildziukevich U., Özdemir Z., Wimmer Z. Recent achievements in medicinal and supramolecular chemistry of betulinic acid and its derivatives. Molecules. 2019;24:3546. doi: 10.3390/molecules24193546. PubMed DOI PMC
Özdemir Z., Wimmer Z. Selected plant triterpenoids and their amide derivatives in cancer treatment: A review. Phytochemistry. 2022;203:113340. doi: 10.1016/j.phytochem.2022.113340. PubMed DOI
Martin D.E., Salzwedel K., Allaway G.P. Bevirimat: A novel maturation inhibitor for the treatment of HIV-1 infection. Antivir. Chem. Chemother. 2008;19:107–113. doi: 10.1177/095632020801900301. PubMed DOI
Martin D.E., Blum R., Doto J., Galbraith H., Ballow C. Multiple-dose pharmacokinetics and safety of bevirimat, a novel inhibitor of HIV maturation, in healthy volunteers. Clin. Pharmacokinet. 2007;46:589–598. doi: 10.2165/00003088-200746070-00004. PubMed DOI
Tang J., Jones S.A., Jeffrey J.L., Mirianda S.R., Galardi C.M., Irlbeck D.M., Brown K.W., McDanal C.B., Johns B.A. Discovery of a novel and potent class of anti-HIV-1 maturation inhibitors with improved virology profile against gag polymorphisms. Bioorg. Med. Chem. Lett. 2017;27:2689–2694. doi: 10.1016/j.bmcl.2017.04.042. PubMed DOI
Marciniec K., Chrobak E., Dabrowska A., Bebenek E., Kadela-Tomanek M., Pecak P., Boryczka S. Phosphate derivatives of 3-carboxyacylbetulin: Synthesis, in vitro anti-HIV and molecular docking study. Biomolecules. 2020;10:1148. doi: 10.3390/biom10081148. PubMed DOI PMC
Sarkar S., Zadrozny K.K., Zadoroyhnyi R., Russell R.W., Quinn C.M., Kleinpeter A., Ablan S., Meshkin H., Perilla J.R., Freed E.O., et al. Structural basis of HIV-1 maturation inhibitor binding and activity. Nat. Commun. 2023;14:1237. doi: 10.1038/s41467-023-36569-y. PubMed DOI PMC
Coric P., Turcaud S., Souquet F., Briant L., Gay B., Royer J., Chazal N., Bouaziz S. Synthesis and biological evaluation of a new derivative of bevirimat that targets the Gag CA-SP1 cleavage site. Eur. J. Med. Chem. 2013;62:453–465. doi: 10.1016/j.ejmech.2013.01.013. PubMed DOI
Martin D.E., Blum R., Wilton J., Doto J., Galbraith H., Burgess G.L., Smith P.C., Ballow C. Safety and pharmacokinetics of bevirimat (PA-457), a novel inhibitor of human immunodeficiency virus maturation, in healthy volunteers. Antimicrob. Agents Chemother. 2007;51:3063–3066. doi: 10.1128/AAC.01391-06. PubMed DOI PMC
Smith P.F., Ogundele A., Forrest A., Wilton J., Salzwedel K., Doto J., Allaway G.P., Martin D.E. Phase I and II study of the safety, virological effect, and pharmacokinetics/pharmacodynamics of single-dose 3-O-(3’,3’-dimethylsuccinyl)betulinic acid (bevirimat) against human immunodeficiency virus infection. Antimicrob. Agents Chemother. 2007;51:3574–3581. doi: 10.1128/AAC.00152-07. PubMed DOI PMC
Regueiro-Ren A., Sit S.-Y., Chen Y., Chen J., Swidorski J.J., Liu Z., Venables B.L., Sin N.; Hartz, R.A.; Protack, T.; et al. The discovery of GSK3640254, a next-generation inhibitor of HIV-1 maturation. J. Med. Chem. 2022;65:11927–11948. doi: 10.1021/acs.jmedchem.2c00879. PubMed DOI
Hartz R.A., Xu L., Sit S.-Y., Chen J., Venables B.L., Lin Z., Zhang S., Li Z., Parker D., Simmons T.S., et al. Synthesis, structure−activity relationships, and in vivo evaluation of novel C-17 amine derivatives based on GSK3640254 as HIV-1 maturation inhibitors with broad spectrum activity. J. Med. Chem. 2022;65:15935–15966. doi: 10.1021/acs.jmedchem.2c01618. PubMed DOI
Meanwell N.A. Sub-stoichiometric modulation of viral targets-potent antiviral agents that exploit target vulnerability. ACS Med. Chem. Lett. 2023;14:1021–1030. doi: 10.1021/acsmedchemlett.3c00279. PubMed DOI PMC
Yuvraj H.C., Pal S., Nitz T.J., Wild C., Gaur R. Construction of a HIV-1 subtype C 3D model using homology modeling and in silico docking, molecular dynamics simulation, and MM-GBSA calculation of second-generation HIV-1 maturation inhibitor(s) J. Biomol. Struct. Dyn. 2023 doi: 10.1080/07391102.2023.2238079. epub ahead of print . PubMed DOI
Chrobak E., Marciniec K., Dabrowska A., Pecak P., Bebenek E., Kadela-Tomanek M., Bak A., Jastrzebska M., Boryczka S. New phosphorus analogs of bevirimat: Synthesis, evaluation of anti-HIV-1 activity and molecular docking study. Int. J. Mol. Sci. 2019;20:5209. doi: 10.3390/ijms20205209. PubMed DOI PMC
Zhao L., He H.H., Ou-Yang T., Liu D.F., Jiang C.H., Yang H.P., Wang P., Xie N., Yan S.S. Pre-clinical pharmacological profile of QF-036, a potent HIV-1 maturation inhibitor. Basic Clin. Pharm. Toxicol. 2021;128:275–285. doi: 10.1111/bcpt.13504. PubMed DOI
Zhao Y., Chen C.-H., Morris-Natschke S.L., Lee K.-H. Design, synthesis, and structure activity relationship analysis of new betulinic acid derivatives as potent HIV inhibitors. Eur. J. Med. Chem. 2021;215:113287. doi: 10.1016/j.ejmech.2021.113287. PubMed DOI PMC
Wang C., Lu L., Na H., Li X., Wang Q., Jiang X., Xu X., Yu F., Zhang T., Li J., et al. Conjugation of a nonspecific antiviral sapogenin with a specific HIV fusion inhibitor: A promising strategy for discovering new antiviral therapeutics. J. Med. Chem. 2014;57:7342–7354. doi: 10.1021/jm500763m. PubMed DOI
Liu F., Wang Y.-N., Li Y., Ma S.-G., Qu J., Liu Y.-B., Niu C.-S., Tang Z.-H., Li Y.-H., Li L., et al. Minor nortriterpenoids from the twigs and leaves of Rhododendron latoucheae. J. Nat. Prod. 2018;81:1721–1733. doi: 10.1021/acs.jnatprod.7b01074. PubMed DOI
Khusnutdinova E., Galimova Z., Lobov A., Baikova I., Kazakova O., Thu H.N.T., Tuyen N.V., Gatilov Y., Csuk R., Serbian I., et al. Synthesis of messagenin and platanic acid chalcone derivatives and their biological potential. Nat. Prod. Res. 2022;36:5189–5198. doi: 10.1080/14786419.2021.1922904. PubMed DOI
Wang H.-Q., Ma S.-G., Zhang D., Li Y.-H., Qu J., Li Y., Liu Y.-B., Yu S.-S. Oxygenated pentacyclic triterpenoids from the stems and branches of Enkianthus chinensis. Bioorg. Chem. 2021;111:104866. doi: 10.1016/j.bioorg.2021.104866. PubMed DOI
Ogawa K., Nakamura S., Oguri H., Ryu K., Yoneda T., Hosoki R. Effective search of triterpenes with anti-HSV-1 activity using a classification model by logistic regression. Front. Chem. 2021;9:763794. doi: 10.3389/fchem.2021.763794. PubMed DOI PMC
Zhao X.-T., Yu M.-H., Su S.-Y., Shi X.-L., Lei C., Hou A.-J. Cycloartane triterpenoids from Pseudolarix amabilis and their antiviral activity. Phytochemistry. 2020;171:112229. doi: 10.1016/j.phytochem.2019.112229. PubMed DOI