Recent Achievements in Medicinal and Supramolecular Chemistry of Betulinic Acid and Its Derivatives ‡
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
FV10599
Ministerstvo Průmyslu a Obchodu
PubMed
31574991
PubMed Central
PMC6803882
DOI
10.3390/molecules24193546
PII: molecules24193546
Knihovny.cz E-zdroje
- Klíčová slova
- ADME parameters, antitumor activity, antiviral activity, betulinic acid, cytotoxicity, physicochemical parameters, structural modification, supramolecular self-assembly,
- MeSH
- chemické jevy * MeSH
- fytonutrienty chemie izolace a purifikace farmakologie MeSH
- kyselina betulinová MeSH
- lidé MeSH
- pentacyklické triterpeny MeSH
- triterpeny chemie izolace a purifikace farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fytonutrienty MeSH
- kyselina betulinová MeSH
- pentacyklické triterpeny MeSH
- triterpeny MeSH
The subject of this review article refers to the recent achievements in the investigation of pharmacological activity and supramolecular characteristics of betulinic acid and its diverse derivatives, with special focus on their cytotoxic effect, antitumor activity, and antiviral effect, and mostly covers a period 2015-2018. Literature sources published earlier are referred to in required coherences or from historical points of view. Relationships between pharmacological activity and supramolecular characteristics are included if such investigation has been done in the original literature sources. A wide practical applicability of betulinic acid and its derivatives demonstrated in the literature sources is also included in this review article. Several literature sources also focused on in silico calculation of physicochemical and ADME parameters of the developed compounds, and on a comparison between the experimental and calculated data.
Zobrazit více v PubMed
Ali-Seyed M., Jantan I., Vijayaraghavan K., Bukhari S.N.A. Betulinic acid: Recent advances in chemical modifications, effective delivery, and molecular mechanisms of a promising anticancer therapy. Chem. Biol. Drug Des. 2016;87:517–536. doi: 10.1111/cbdd.12682. PubMed DOI
Moghaddam M.G., Ahmad J.B.H., Samzadeh-Kermani A. Biological activity of betulinic acid: A review. Phamacol. Pharm. 2012;3:119–123. doi: 10.4236/pp.2012.32018. DOI
Rios J.L., Manez S. New pharmacological opportunities for betulinic acid. Planta Med. 2018;84:8–19. doi: 10.1055/s-0043-123472. PubMed DOI
Retzlaff F. Ueber Herba Gratiolae. Arch. Pharm. 1902;240:561–568. doi: 10.1002/ardp.19022400802. DOI
Šarek J., Kvasnica M., Vlk M., Urban M., Džubák P., Hajdúch M. The potential of triterpenoids in the treatment of melanoma. In: Murph M., editor. Research on Melanoma—A Glimpse into Current Directions and Future Trends. InTech; Rijeka, Croatia: 2011. pp. 125–158. Chapter 7.
Cichewicz R.H., Kouzi S.A. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med. Res. Rev. 2004;24:90–114. doi: 10.1002/med.10053. PubMed DOI
Csuk R., Schmuck K., Schäfer R. A practical synthesis of betulinic acid. Tetrahedron Lett. 2006;47:8769–8770. doi: 10.1016/j.tetlet.2006.10.004. DOI
Krasutsky P.A. Birch bark research and development. Nat. Prod. Rep. 2006;23:919–942. doi: 10.1039/b606816b. PubMed DOI
Sajfrtová M., Ličková I., Wimmerová M., Sovová H., Wimmer Z. β-Sitosterol: Supercritical carbon dioxide extraction from sea buckthorn (Hippophae rhamnoides L.) seeds. Int. J. Mol. Sci. 2010;11:1842–1850. doi: 10.3390/ijms11041842. PubMed DOI PMC
Lepojevic I., Lepojevic Z., Pavlic B., Ristic M., Zekovic Z. Solid-liquid and high-pressure (liquid and supercritical carbondioxide) extraction of Echinacea purpurea L. J. Supercrit. Fluids. 2017;119:159–168. doi: 10.1016/j.supflu.2016.09.002. DOI
Trumbull E.R., Bianchi E., Eckert D.J., Wiedhopf R.M., Cole J.R. Tumor inhibitory agents from Vauquelinia-Corymbosa (Rosaceae) J. Pharm. Sci. 1976;65:1407–1408. doi: 10.1002/jps.2600650938. PubMed DOI
Pisha E., Chai H., Lee I.-S., Chagwedera T.E., Farnsworth N.R., Cordell G.A., Beecher C.W.W., Fong H.H.S., Kinghorn A.D., Brown D.M., et al. Discovery of betulinic acid as a selective inhibitor of human-melanoma that functions by induction of apoptosis. Nat. Med. 1995;1:1046–1051. doi: 10.1038/nm1095-1046. PubMed DOI
Rajendran P., Jaggi M., Singh M.K., Mukherjee R., Burman A.C. Pharmacological evaluation of C-3 modified betulinic acid derivatives with potent anticancer activity. Investig. New Drugs. 2008;26:25–34. doi: 10.1007/s10637-007-9081-4. PubMed DOI
Zhang X., Hu J., Chen Y. Betulinic acid and the pharmacological effects of tumor suppression (review) Mol. Med. Rep. 2016;14:4489–4495. doi: 10.3892/mmr.2016.5792. PubMed DOI
Zhang D.M., Xu H.G., Wang L., Li Y.J., Sun P.H., Wu X.M., Wang G.J., Chen W.M., Ye W.C. Betulinic acid and its derivatives as potential antitumor agents. Med. Res. Rev. 2015;35:1127–1155. doi: 10.1002/med.21353. PubMed DOI
Gheorgheosu D., Duicu O., Dehelean C., Soica C., Muntean D. Betulinic acid as a potent and complex antitumor phytochemical: A minireview. Anticancer Agents Med. Chem. 2014;14:936–945. doi: 10.2174/1871520614666140223192148. PubMed DOI
Selzer E., Pimentel E., Wacheck W., Schlegel W., Pehamberger H., Jansen B., Kodym R. Effects of betulinic acid alone and in combination with irradiation in human melanoma cells. J. Investig. Dermatol. 2000;114:935–940. doi: 10.1046/j.1523-1747.2000.00972.x. PubMed DOI
Selzer E., Thallinger C., Hoeller C., Oberkleiner P., Wacheck W., Pehamberger H., Jansen B. Betulinic acid-induced Mcl-1 expression in human melanoma-mode of action and functional significance. Mol. Med. 2002;8:877–884. doi: 10.1007/BF03402094. PubMed DOI PMC
Keller P.W., Adamson C.S., Heymann J.B., Freed E.O., Steven A.C. HIV-1 maturation inhibitor bevirimat stabilizes the immature Gag lattice. J. Virol. 2011;85:1420–1428. doi: 10.1128/JVI.01926-10. PubMed DOI PMC
Suh N., Wang Y., Honda T., Gribble G.W., Dmitrovsky E., Hickey W.F., Maue R.A., Place A.E., Porter D.M., Spinella M.J., et al. A novel synthetic oleanane triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, with potent differentiating, antiproliferative, and antiinflammatory activity. Cancer Res. 1999;59:336–341. PubMed
Willmann M., Wacheck W., Buckley J., Nagy K., Thalhammer J., Paschke R., Triche T., Jansen B., Selzer E. Characterization of NVX-207, a novel betulinic acidderived anti-cancer compound. Eur. J. Clin. Investig. 2009:384–394. doi: 10.1111/j.1365-2362.2009.02105.x. PubMed DOI
Dash S.K., Chattopadhyay S., Dash S.S., Tripathy S., Das B., Mahapatra S.K., Bag B.G., Karmakar P., Roy S. Self-assembled nano fibers of betulinic acid: A selective inducer for ROS/TNF-alpha pathway mediated leukemic cell death. Bioorg. Chem. 2015;63:85–100. doi: 10.1016/j.bioorg.2015.09.006. PubMed DOI
Yogeeswari P., Sriram D. Betulinic acid and its derivatives: A review on their biological properties. Curr. Med. Chem. 2005;12:657–666. doi: 10.2174/0929867053202214. PubMed DOI
Aiken C., Chen C.H. Betulinic acid derivatives as HIV-1 antivirals. Trends Mol. Med. 2005;11:31–36. doi: 10.1016/j.molmed.2004.11.001. PubMed DOI
Gallo R., Sarin P., Gelmann E., Robert-Guroff M., Richardson E., Kalyanaraman V., Mann D., Sidhu G., Stahl R., Zolla-Pazner S., et al. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS) Science. 1983;220:865–867. doi: 10.1126/science.6601823. PubMed DOI
Zhao Y., Gu Q., Morris-Natschke S.L., Chen C.-H., Lee K.-H. Incorporation of privileged structures into bevirimat can improve activity against wild-type and bevirimat-resistant HIV-1. J. Med. Chem. 2016;59:9262–9268. doi: 10.1021/acs.jmedchem.6b00461. PubMed DOI PMC
Zhan P., Pannecouque C., De Clercq E., Liu X. Anti-HIV drug discovery and development: Current innovations and future trends. J. Med. Chem. 2015;59:2849–2878. doi: 10.1021/acs.jmedchem.5b00497. PubMed DOI
Fujioka T., Kashiwada Y., Kilkuskie R.E., Cosentino L.M., Ballas L.M., Jiang J.B., Janzen W.P., Chen I.-S., Lee K.-H. Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J. Nat. Prod. 1994;57:243–247. doi: 10.1021/np50104a008. PubMed DOI
Heidary N.M., Laszczyk-Lauer M.N., Reichling J., Schnitzler P. Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication. Phytomedicine. 2014;21:1273–1280. doi: 10.1016/j.phymed.2014.06.007. PubMed DOI
Yao D., Li H., Gou Y., Zhang H., Vlessidis A.G., Zhou H., Evmiridis N.P., Liu Z. Betulinic acid-mediated inhibitory effect on hepatitis B virus by suppression of manganese superoxide dismutase expression. FEBS J. 2009;276:2599–2614. doi: 10.1111/j.1742-4658.2009.06988.x. PubMed DOI
Huguet A., Recio M.C., Máñez S., Giner R., Ríos J.L. Effect of triterpenoids on the inflammation induced by protein kinase C activators, neuronally acting irritants and other agents. Eur. J. Pharmacol. 2000;410:69–81. doi: 10.1016/S0014-2999(00)00860-8. PubMed DOI
Gautam R., Jachak S.M. Recent developments in anti-inflammatory natural products. Med. Res. Rev. 2009;29:767–820. doi: 10.1002/med.20156. PubMed DOI
Silva F.S., Oliveira P.J., Duarte M.F. Oleanolic, ursolic, and betulinic acids as food supplements or pharmaceutical agents for type 2 diabetes: Promise or illusion? J. Agric. Food Chem. 2016;64:2991–3008. doi: 10.1021/acs.jafc.5b06021. PubMed DOI
Thomas C., Gioiello A., Noriega L., Strehle A., Oury J., Rizzo G., Macchiarulo A., Yamamoto H., Mataki C., Pruzanski M., et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metabol. 2009;10:167–177. doi: 10.1016/j.cmet.2009.08.001. PubMed DOI PMC
Quan H.Y., Kim D.Y., Kim S.J., Jo H.K., Kim G.W., Chung S.H. Betulinic acid alleviates non-alcoholic fatty liver by inhibiting SREBP1 activity via the AMPK-mTOR-SREBP signaling pathway. Biochem. Pharmacol. 2013;85:1330–1340. doi: 10.1016/j.bcp.2013.02.007. PubMed DOI
Bag B.G., Dash S.S. First self-assembly study of betulinic acid, a renewable nano-sized, 6-6-6-6-5 pentacyclic monohydroxy triterpenic acid. Nanoscale. 2011;3:4564–4566. doi: 10.1039/c1nr10886g. PubMed DOI
Bag B.G., Majumdar R. Self-assembly of renewable nano-sized triterpenoids. Chem. Rec. 2017;17:841–873. doi: 10.1002/tcr.201600123. PubMed DOI
Ali A., Kamra M., Bhan A., Mandal S.S., Bhattacharya S. New Fe(III) and Co(II) salen complexes with pendant distamycins: Selective targeting of cancer cells by DNA damage and mitochondrial pathways. Dalton Trans. 2016;45:9345–9353. doi: 10.1039/C5DT04374C. PubMed DOI
Cragg G.M., Grothaus P.G., Newman D.J. New horizons for old drugs and drug leads. J. Nat. Prod. 2014;77:703–723. doi: 10.1021/np5000796. PubMed DOI
Zhou M., Zhang R.-H., Wang M., Xu G.-B., Liao S.-G. Prodrugs of triterpenoids and their derivatives. Eur. J. Med. Chem. 2017;131:222–236. doi: 10.1016/j.ejmech.2017.03.005. PubMed DOI
Csuk R. Betulinic acid and its derivatives: A patent review (2008–2013) Expert Opin. Ther. Pat. 2014;24:913–923. doi: 10.1517/13543776.2014.927441. PubMed DOI
Konysheva A.V., Nebogatikov V.O., Tolmacheva I.A., Dmitriev M.V., Grishko V.V. Synthesis of cytotoxically active derivatives based on alkylated 2,3-seco-triterpenoids. Eur. J. Med. Chem. 2017;140:74–83. doi: 10.1016/j.ejmech.2017.09.005. PubMed DOI
Grishko V.V., Tolmacheva I.A., Nebogatikov V.O., Galaiko N.V., Nazarov A.V., Dmitriev M.V., Ivshina I.B. Preparation of novel ring-A fused azole derivatives of betulin and evaluation of their cytotoxicity. Eur. J. Med. Chem. 2017;125:629–639. doi: 10.1016/j.ejmech.2016.09.065. PubMed DOI
Eignerová B., Tichý M., Krasulová J., Kvasnica M., Rárová L., Christová R., Urban M., Bednarczyk-Cwynar B., Hajdúch M. Synthesis and antiproliferative properties of new hydrophilic esters of triterpenic acids. Eur. J. Med. Chem. 2017;140:403–420. doi: 10.1016/j.ejmech.2017.09.041. PubMed DOI
Bildziukevich U., Vida N., Rárová L., Kolář M., Šaman D., Havlíček L., Drašar P., Wimmer Z. Polyamine derivatives of betulinic acid and β-sitosterol: A comparative investigation. Steroids. 2015;100:27–35. doi: 10.1016/j.steroids.2015.04.005. PubMed DOI
Bildziukevich U., Kaletová E., Šaman D., Sievänan E., Kolehmainen E.T., Šlouf M., Wimmer Z. Spectral and microscopic study of self-assembly of novel cationic spermine amides of betulinic acid. Steroids. 2017;117:90–96. doi: 10.1016/j.steroids.2016.07.007. PubMed DOI
Özdemir Z., Bildziukevich U., Šaman D., Havlíček L., Rárová L., Navrátilová L., Wimmer Z. Amphiphilic derivatives of (3β,17β)-3-hydroxyandrost-5-ene-17-carboxylic acid. Steroids. 2017;128:58–67. doi: 10.1016/j.steroids.2017.10.011. PubMed DOI
Vashist A., Kaushik A., Vashist A., Bala J., Nikkhah-Moshaie R., Sagar V., Nair M. Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov. Today. 2018;23:1436–1443. doi: 10.1016/j.drudis.2018.05.018. PubMed DOI PMC
Šaman D., Kolehmainen E.T. Studies on supramolecular gel formation using DOSY NMR. Magn. Reson. Chem. 2015;53:256–260. PubMed
Noponen V., Nonappa, Lahtinen M., Valkonen A., Salo H., Kolehmainen E., Sievänen E. Bile acid–amino acid ester conjugates: Gelation, structural properties, and thermoreversible solid to solid phase transition. Soft Matter. 2010;6:3789–3796. doi: 10.1039/b925795k. DOI
Svobodová H., Nonappa, Wimmer Z., Kolehmainen E. Design, synthesis and stimuli responsive gelation of novel stigmasterol–amino acid conjugates. J. Colloid Interface Sci. 2011;361:587–593. doi: 10.1016/j.jcis.2011.05.084. PubMed DOI
Hirst A.R., Coates I.A., Boucheteau T.R., Miravet J.F., Escuder B., Castelletto V., Hamley I.W., Smith D.K. Low-molecular-weight gelators: Elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. J. Am. Chem. Soc. 2008;130:9113–9121. doi: 10.1021/ja801804c. PubMed DOI
Bildziukevich U., Rárová L., Šaman D., Wimmer Z. Picolyl amides of betulinic acid as antitumor agents causing tumor cell apoptosis. Eur. J. Med. Chem. 2018;145:41–50. doi: 10.1016/j.ejmech.2017.12.096. PubMed DOI
Bildziukevich U., Rárová L., Šaman D., Havlíček L., Drašar P., Wimmer Z. Amides derived from heteroaromatic amines and selected steryl hemiesters. Steroids. 2013;78:1347–1352. doi: 10.1016/j.steroids.2013.10.003. PubMed DOI
Zhang L., Hou S., Li B., Pan J., Jiang L., Zhou G., Gu H., Zhao C., Lu H., Ma F. Combination of betulinic acid with diazen-1-ium-1,2-diolate nitric oxide moiety donating a novel anticancer candidate. OncoTargets Ther. 2018;11:361–373. doi: 10.2147/OTT.S154412. PubMed DOI PMC
Smith P.F., Ogundele A., Forrest A., Wilton J., Salzwedel K., Doto J., Allaway G.P., Martin D.E. Phase I and II study of safety, virologic effect, and pharmacokinetics/pharmacodynamics of single-dose 3-O-(3′,3′-dimethylsuccinyl) betulinic acid (bevirimat) against human immunodeficiency virus infection. Antimicrob. Agents Chemother. 2007;51:3574–3581. doi: 10.1128/AAC.00152-07. PubMed DOI PMC
Margot N.A., Gibbs C.S., Miller M.D. Phenotypic susceptibility to bevirimat in isolates from HIV-1-infected patients without prior exposure to bevirimat. Antimicrob. Agents Chemother. 2010;54:2345–2353. doi: 10.1128/AAC.01784-09. PubMed DOI PMC
Qian K., Bori I.D., Chen C.-H., Huang L., Lee K.-H. Anti-AIDS agents 90. Novel C-28 modified bevirimat analogues as potent HIV maturation inhibitors. J. Med. Chem. 2012;55:8128–8136. doi: 10.1021/jm301040s. PubMed DOI PMC
Patel R., Park S.W. An evolving role of piperazine moieties in drug design and discovery. Mini-Rev. Med. Chem. 2013;13:1579–1601. doi: 10.2174/13895575113139990073. PubMed DOI
Tagat J.R., McCombie S.W., Nazareno D., Labroli M.A., Xiao Y., Steensma R.W., Strizki J.M., Baroudy B.M., Cox K., Lachowicz J., et al. Piperazine-based CCR5 antagonists as HIV-1 inhibitors. IV. Discovery of 1-[(4,6-dimethyl-5-pyrimidinyl)carbonyl]-4-[4-{2-methoxy-1(R)-4-(trifluoromethyl)-phenyl}ethyl-3(S)-methyl-1-piperazinyl]-4-methylpiperidine (Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonist. J. Med. Chem. 2004;47:2405–2408. PubMed
Thompson T.N. Optimization of metabolic stability as a goal of modern drug design. Med. Res. Rev. 2001;21:412–449. doi: 10.1002/med.1017. PubMed DOI
Liu Z., Swidorski J.J., Nowicka-Sans B., Terry B., Protack T., Lin Z., Samanta H., Zhang S., Li Z., Parker D.D., et al. C-3 benzoic acid derivatives of C-3 deoxybetulinic acid and deoxybetulin as HIV-1 maturation inhibitors. Bioorg. Med. Chem. 2016;24:1757–1770. doi: 10.1016/j.bmc.2016.03.001. PubMed DOI
Tang J., Jones S.A., Jeffrey J.L., Miranda S.R., Galardi C.M., Irlbeck D.M., Brown K.W., McDanal C.B., Johns B.A. Discovery of a novel and potent class of anti-HIV-1 maturation inhibitors with improved virology profile against gag polymorphisms. Bioorg. Med. Chem. Lett. 2017;27:2689–2694. doi: 10.1016/j.bmcl.2017.04.042. PubMed DOI
Swidorski J.J., Liu Z., Sit S.-Y., Chen J., Chen Y., Sin N., Venables B.L., Parker D.D., Nowicka-Sans B., Terry B.J., et al. Inhibitors of HIV-1 maturation: Development of structure–activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids. Bioorg. Med. Chem. Lett. 2016;26:1925–1930. doi: 10.1016/j.bmcl.2016.03.019. PubMed DOI
Regueiro-Ren A., Liu Z., Chen Y., Sin N., Sit S.-Y., Swidorski J.J., Chen J., Venables B.L., Zhu J., Nowicka-Sans B., et al. Discovery of BMS-955176, a second generation HIV-1 maturation inhibitor with broad spectrum antiviral activity. ACS Med. Chem. Lett. 2016;7:568–572. doi: 10.1021/acsmedchemlett.6b00010. PubMed DOI PMC
Ortiz A., Soumeillant M., Savage S.A., Strotman N.A., Haley M., Benkovics T., Nye J., Xu Z., Tan Y., Ayers S., et al. Synthesis of HIV-Maturation Inhibitor BMS-955176 from betulin by an enabling oxidation strategy. J. Org. Chem. 2017;82:4958–4963. doi: 10.1021/acs.joc.7b00438. PubMed DOI
Visalli R.J., Ziobrowski H., Badri K.R., He J.J., Zhang X., Arumugam S.R., Zhao H. Ionic derivatives of betulinic acid exhibit antiviral activity against herpes simplex virus type-2 (HSV-2), but not HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 2015;25:3168–3171. doi: 10.1016/j.bmcl.2015.05.099. PubMed DOI PMC
Tolmacheva I.A., Igosheva E.V., Savinova O.V., Boreko E.I., Grishko V.V. Synthesis and antiviral activity of C-3(C-28)-substituted 2,3-seco-triterpenoids. Chem. Nat. Comp. 2014;49:1050–1058. doi: 10.1007/s10600-014-0821-3. DOI
Konysheva A.V., Tolmacheva I.A., Savinova O.V., Boreko E.I., Grishko V.V. Regioselective transformation of the cyano group of triterpene α,β-alkenenitriles. Chem. Nat. Comp. 2017;53:687–690. doi: 10.1007/s10600-017-2091-3. DOI
Chen S.-Y., Wang C.-M., Cheng H.-L., Chen H.-J., Hsu Y.-M., Lin Y.-C., Chou C.-H. Biological activity of oleanane triterpene derivatives obtained by chemical derivatization. Molecules. 2013;18:13003–13019. doi: 10.3390/molecules181013003. PubMed DOI PMC
Li N., Zhou Z.-S., Shen Y., Xu J., Miao H.-H., Xiong Y., Xu F., Li B.-L., Luo J., Song B.-L. Inhibition of the sterol regulatory element-binding protein pathway suppresses hepatocellular carcinoma by repressing inflammation in mice. Hepatology. 2017;65:1936–1947. doi: 10.1002/hep.29018. PubMed DOI
Yu H., Zhang H., Chu Z., Ruan Q., Chen X., Kong D., Huang X., Li H., Tang H., Wu H., et al. Combination of betulinic acid and chidamide synergistically inhibits Epstein-Barr virus replication through over-generation of reactive oxygen species. Oncotarget. 2017;8:61646–61661. doi: 10.18632/oncotarget.18661. PubMed DOI PMC
Selected Plant Triterpenoids and Their Derivatives as Antiviral Agents
Terpene Research Is Providing New Inspiration for Scientists