Novel Oleanolic Acid-Tryptamine and -Fluorotryptamine Amides: From Adaptogens to Agents Targeting In Vitro Cell Apoptosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FV30300
Ministerstvo Průmyslu a Obchodu
FV10599
Ministerstvo Průmyslu a Obchodu
CZ.02.1.01/0.0/0.0/16_019/0000738
European Regional Development Fund
PubMed
34685891
PubMed Central
PMC8540097
DOI
10.3390/plants10102082
PII: plants10102082
Knihovny.cz E-zdroje
- Klíčová slova
- adaptogen, apoptosis, caspase, cytotoxicity, fluorotryptamine, oleanolic acid, psychotropic drug, tryptamine,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Oleanolic acid is a natural plant adaptogen, and tryptamine is a natural psychoactive drug. To compare their effects of with the effect of their derivatives, tryptamine and fluorotryptamine amides of oleanolic acid were designed and synthesized. METHODS: The target amides were investigated for their pharmacological effect, and basic supramolecular self-assembly characteristics. Four human cancer cell lines were involved in the screening tests performed by standard methods. RESULTS: The ability to display cytotoxicity and to cause selective cell apoptosis in human cervical carcinoma and in human malignant melanoma was seen with the three most active compounds of the prepared series of compounds. Tryptamine amide of (3β)-3-(acetyloxy)olean-12-en-28-oic acid (3a) exhibited cytotoxicity in HeLa cancer cell lines (IC50 = 8.7 ± 0.4 µM) and in G-361 cancer cell lines (IC50 = 9.0 ± 0.4 µM). Fluorotryptamine amides of (3β)-3-(acetyloxy)olean-12-en-28-oic acid (compounds 3b and 3c) showed cytotoxicity in the HeLa cancer cell line (IC50 = 6.7 ± 0.4 µM and 12.2 ± 4.7 µM, respectively). The fluorotryptamine amide of oleanolic acid (compound 4c) displayed cytotoxicity in the MCF7 cancer cell line (IC50 = 13.5 ± 3.3 µM). Based on the preliminary UV spectra measured in methanol/water mixtures, the compounds 3a-3c were also found to self-assemble into supramolecular systems. Conclusions: An effect of the fluorine atom present in the molecules on self-assembly was observed with 3b. Enhanced cytotoxicity has been achieved in 3a-4c in comparison with the effect of the parent oleanolic acid (1) and tryptamine. The compounds 3a-3c showed a strong induction of apoptosis in HeLa and G-361 cells after 24 h.
Zobrazit více v PubMed
Pollier J., Goossens A. Oleanolic acid. Phytochemistry. 2012;77:10–15. doi: 10.1016/j.phytochem.2011.12.022. PubMed DOI
Fukushima E.O., Seki H., Ohyama K., Ono E., Umemoto N., Mizutani M., Saito K., Muranaka T. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant Cell Physiol. 2011;52:2050–2061. doi: 10.1093/pcp/pcr146. PubMed DOI
Fai Y.M., Tao C.C. A review of presence of oleanolic acid in natural products. Nat. Proda Med. 2009;2:1–271.
Özdemir Z., Bildziukevich U., Wimmerová M., Macůrková A., Lovecká P., Wimmer Z. Plant adaptogens: Natural medicaments for 21st century? ChemistrySelect. 2018;3:2196–2214. doi: 10.1002/slct.201702682. DOI
Džubák P., Hajdúch M., Vydra D., Hustová A., Kvasnica M., Biedermann D., Marková L., Urban M., Šarek J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep. 2006;23:394–411. doi: 10.1039/b515312n. PubMed DOI
Laszczyk M.N. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med. 2009;75:1549–1560. doi: 10.1055/s-0029-1186102. PubMed DOI
Zhou M., Zhang R.-H., Wang M., Xu G.-B., Liao S.-G. Prodrugs of triterpenoids and their derivatives. Eur. J. Med. Chem. 2017;131:222–236. doi: 10.1016/j.ejmech.2017.03.005. PubMed DOI
Garg N.K., Tandel N., Jadon R.S., Tyagi R.K., Katare O.P. Lipid–polymer hybrid nanocarrier-mediated cancer therapeutics: Current status and future directions. Drug Discov. Today. 2018;23:1610–1621. doi: 10.1016/j.drudis.2018.05.033. PubMed DOI
Bildziukevich U., Özdemir Z., Wimmer Z. Recent achievements in medicinal and supramolecular chemistry of betulinic acid and its derivatives. Molecules. 2019;24:3546. doi: 10.3390/molecules24193546. PubMed DOI PMC
Bildziukevich U., Malík M., Özdemir Z., Rárová L., Janovská L., Šlouf M., Šaman D., Šarek J., Nonappa, Wimmer Z. Spermine amides of selected triterpenoid acids: Dynamic supramolecular systems formation influences cytotoxicity of the drugs. J. Mater. Chem. B. 2020;8:484–491. doi: 10.1039/C9TB01957J. PubMed DOI
Guo Z., Xu Y., Peng Y., Rashid H., Quan W., Xie P., Wu L., Jiang J., Wang L., Liu X. Design, synthesis and evaluation of novel (S)-tryptamine derivatives containing an allyl group and an aryl sulfonamide unit as anticancer agents. Bioorg. Med. Chem. Lett. 2019;29:1133–1137. doi: 10.1016/j.bmcl.2019.02.023. PubMed DOI
Choi S., Green D., Ho A., Klein U.D., Taylor R., Turner S. Designing selective, high affinity ligands of 5-HT1D receptor by covalent dimerization of 5-HT1F ligands derived from 4-fluoro-N-[3-(1-methyl-4-piperidinyl)-1H-indol-5-yl]benzamide. J. Med. Chem. 2008;51:3609–3616. doi: 10.1021/jm7011722. PubMed DOI
Faulkner K.C., Hurley K.A., Weibel D.B. 5-Alkyloxytryptamines are membrane-targeting, broad-spectrum antibiotics. Bioorg. Med. Chem. Lett. 2016;26:5539–5544. doi: 10.1016/j.bmcl.2016.10.004. PubMed DOI PMC
Minrovich B.M., Hubble V.B., Barker W.T., Jania L.A., Melander R.J., Koller B.H., Mellander C. Second-generation tryptamine derivatives potently sensitize colistin resistant bacteria to colistin. ACS Med. Chem. Lett. 2019;10:828–833. doi: 10.1021/acsmedchemlett.9b00135. PubMed DOI PMC
Fang J., Huang T., Xia M., Deng L., Hao X., Wang Y., Mu S. Design and synthesis of novel monoterpenoid indole alkaloid-like analogues and their antitumour activities in vitro. Org. Biomol. Chem. 2018;16:3026–3037. doi: 10.1039/C8OB00677F. PubMed DOI
Jose J., Tavares C.D.J., Ebelt N.D., Lodi A., Edupuganti R., Xie X., Devkota A.K., Kaoud T.S., Van Den Berg C.L., Anslyn E.V., et al. Serotonin analogues as inhibitors of breast cancer cell growth. ACS Med. Chem. Lett. 2017;8:1072–1076. doi: 10.1021/acsmedchemlett.7b00282. PubMed DOI PMC
Xiong R., He D., Deng X., Liu J., Lei X., Xie Z., Cao X., Chen Y., Peng J., Tang G. Design, synthesis and biological evaluation of tryptamine salicylic acid derivatives as potential antitumor agents. Med. Chem. Commun. 2019;10:573–583. doi: 10.1039/C8MD00484F. PubMed DOI PMC
Araujo A.M., Carvalho F., de Lourdes Bastos M., de Pinho P.G., Carvalho M. The hallucinogenic world of tryptamines: An updated review. Arch. Toxicol. 2015;89:1151–1173. doi: 10.1007/s00204-015-1513-x. PubMed DOI
Amin N., Shafabakhsh R., Reiter R.J., Asemi Z. Melatonin is an appropriate candidate for breast cancer treatment: Based on known molecular mechanisms. J. Cell. Biochem. 2019;120:12208–12215. doi: 10.1002/jcb.28832. PubMed DOI
Zakki S.A., Muhammad J.S., Li J.-L., Sun L., Li M.-L., Feng Q.-W., Li Y.-L., Cui Z.-G., Inadera H. Melatonin triggers the anticancer potential of phenylarsine oxide via induction of apoptosis through ROS generation and JNK activation. Metallomics. 2020;12:396–407. doi: 10.1039/C9MT00238C. PubMed DOI
Blair J.B., Kurrash-Orbaugh D., Marona-Lewicka D., Cumbay M.G., Watts V.J., Barker E.L., Nichols D.E. Effect of ring fluorination on the pharmacology of hallucinogenic tryptamines. J. Med. Chem. 2000;43:4701–4710. doi: 10.1021/jm000339w. PubMed DOI
Rowland R.S., Taylor R. Intermolecular nonbonded contact distances in organic crystal structures: Comparison with distances expected from van der Waals radii. J. Phys. Chem. 1996;100:7384–7391. doi: 10.1021/jp953141+. DOI
Böhm H.-J., Banner D., Bendels S., Kansy M., Kuhn B., Müller K., Obst-Sander U., Stahl M. Fluorine in Medicinal Chemistry. ChemBioChem. 2004;5:637–643. doi: 10.1002/cbic.200301023. PubMed DOI
Shah P., Westwell A.D. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem. 2007;22:527–540. doi: 10.1080/14756360701425014. PubMed DOI
Campbell I.W., Ewing D.J., Clarke B.F. Therapeutic experience with fluorocortisone in diabetic postural hypotension. Br. Med. J. 1976;1:872–874. doi: 10.1136/bmj.1.6014.872. PubMed DOI PMC
Isanbor C., O’Hagan D. Fluorine in medicinal chemistry: A review of anti-cancer agents. J. Fluor. Chem. 2006;127:303–319. doi: 10.1016/j.jfluchem.2006.01.011. DOI
Sun S., Adejare A. Fluorinated molecules as drugs and imaging agents in the CNS. Curr. Top. Med. Chem. 2006;6:1457–1464. doi: 10.2174/156802606777951046. PubMed DOI
Seca A.M.L., Pinto D.C.G.A. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci. 2018;19:263. doi: 10.3390/ijms19010263. PubMed DOI PMC
Hoenke S., Serbian I., Deigner H.-P., Csuk R. Mitocanic di- and triterpenoid rhodamine B conjugates. Molecules. 2020;25:5443. doi: 10.3390/molecules25225443. PubMed DOI PMC
Khwaza V., Mlala S., Oyedeji O.O., Aderibigbe B.A. Pentacyclic triterpenoids with nitrogen-containing heterocyclic moiety, privileged hybrids in anticancer drug discovery. Molecules. 2021;26:2401. doi: 10.3390/molecules26092401. PubMed DOI PMC
Malík M., Velechovský J., Tlustoš P. Natural pentacyclic triterpenoid acids potentially useful as biocompatible nanocarriers. Fitoterapia. 2021;151:104845. doi: 10.1016/j.fitote.2021.104845. PubMed DOI
Gudoityte E., Arandarcikaite O., Mazeikiene I., Bendokas V., Liobikas J. Ursolic and oleanolic acids: Plant metabolites with neuroprotective potential. Int. J. Mol. Sci. 2021;22:4599. doi: 10.3390/ijms22094599. PubMed DOI PMC
Hoenke S., Christoph M.A., Friedrich S., Heise N., Brandes B., Deigner H.-P., Al-Harrasi A., Csuk R. The presence of a cyclohexyldiamine moiety confers cytotoxicity to pentacyclic triterpenoids. Molecules. 2021;26:2102. doi: 10.3390/molecules26072102. PubMed DOI PMC
Fan J.-P., Lai X.-H., Zhang X.-H., Yang L., Yuan T.-T., Chen H.-P., Liang X. Synthesis and evaluation of the cancer cell growth inhibitory activity of the ionic derivatives of oleanolic acid and ursolic acid with improved solubility. J. Mol. Liquids. 2021;332:115837. doi: 10.1016/j.molliq.2021.115837. DOI
Özdemir Z., Šaman D., Bertula K., Lahtinen M., Bednárová L., Pazderková M., Rárová L., Nonappa, Wimmer Z. Rapid self-healing and thixotropic organogelation of amphiphilic oleanolic acid–spermine conjugates. Langmuir. 2021;37:2693–2706. doi: 10.1021/acs.langmuir.0c03335. PubMed DOI
Bildziukevich U., Rárová L., Šaman D., Wimmer Z. Picolyl amides of betulinic acid as antitumor agents causing tumor cell apoptosis. Eur. J. Med. Chem. 2018;145:41–50. doi: 10.1016/j.ejmech.2017.12.096. PubMed DOI
Advanced Chemistry Development, Software ACD/iLabs, Version 12.02. 2011. [(accessed on 10 September 2021)]. Available online: https://ilabs.eccouncil.org.
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and developmental settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI
Ghose A.K., Viswanadhan V.N., Wendoloski J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999;1:55–68. doi: 10.1021/cc9800071. PubMed DOI
Ha W., Zhao X.-B., Zhao W.-H., Tang J.-J., Shi Y.P. A colon-targeted podophyllotoxin nanoprodrug: Synthesis, characterization, and supramolecular hydrogel formation for the drug combination. J. Mater. Chem. B. 2021;9:3200–3209. doi: 10.1039/D0TB02719G. PubMed DOI
Keum C., Hong J., Kim D., Lee S.-Y., Kim H. Lysozyme-instructed self-assembly of amino-acid-functionalized perylene diimide for multidrug-resistant cancer cells. ACS Appl. Mater. Interfaces. 2021;13:14866–14874. doi: 10.1021/acsami.0c20050. PubMed DOI
Bildziukevich U., Rárová L., Šaman D., Havlíček L., Drašar P., Wimmer Z. Amides derived from heteroaromatic amines and selected steryl hemiesters. Steroids. 2013;78:1347–1352. doi: 10.1016/j.steroids.2013.10.003. PubMed DOI
Bildziukevich U., Vida N., Rárová L., Kolář M., Šaman D., Havlíček L., Drašar P., Wimmer Z. Polyamine derivatives of betulinic acid and β-sitosterol: A comparative investigation. Steroids. 2015;100:27–35. doi: 10.1016/j.steroids.2015.04.005. PubMed DOI
Özdemir Z., Rybková M., Vlk M., Šaman D., Rárová L., Wimmer Z. Synthesis and pharmacological effects of diosgenin–betulinic acid conjugates. Molecules. 2020;25:3546. doi: 10.3390/molecules25153546. PubMed DOI PMC