Novel Oleanolic Acid-Tryptamine and -Fluorotryptamine Amides: From Adaptogens to Agents Targeting In Vitro Cell Apoptosis

. 2021 Sep 30 ; 10 (10) : . [epub] 20210930

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34685891

Grantová podpora
FV30300 Ministerstvo Průmyslu a Obchodu
FV10599 Ministerstvo Průmyslu a Obchodu
CZ.02.1.01/0.0/0.0/16_019/0000738 European Regional Development Fund

BACKGROUND: Oleanolic acid is a natural plant adaptogen, and tryptamine is a natural psychoactive drug. To compare their effects of with the effect of their derivatives, tryptamine and fluorotryptamine amides of oleanolic acid were designed and synthesized. METHODS: The target amides were investigated for their pharmacological effect, and basic supramolecular self-assembly characteristics. Four human cancer cell lines were involved in the screening tests performed by standard methods. RESULTS: The ability to display cytotoxicity and to cause selective cell apoptosis in human cervical carcinoma and in human malignant melanoma was seen with the three most active compounds of the prepared series of compounds. Tryptamine amide of (3β)-3-(acetyloxy)olean-12-en-28-oic acid (3a) exhibited cytotoxicity in HeLa cancer cell lines (IC50 = 8.7 ± 0.4 µM) and in G-361 cancer cell lines (IC50 = 9.0 ± 0.4 µM). Fluorotryptamine amides of (3β)-3-(acetyloxy)olean-12-en-28-oic acid (compounds 3b and 3c) showed cytotoxicity in the HeLa cancer cell line (IC50 = 6.7 ± 0.4 µM and 12.2 ± 4.7 µM, respectively). The fluorotryptamine amide of oleanolic acid (compound 4c) displayed cytotoxicity in the MCF7 cancer cell line (IC50 = 13.5 ± 3.3 µM). Based on the preliminary UV spectra measured in methanol/water mixtures, the compounds 3a-3c were also found to self-assemble into supramolecular systems. Conclusions: An effect of the fluorine atom present in the molecules on self-assembly was observed with 3b. Enhanced cytotoxicity has been achieved in 3a-4c in comparison with the effect of the parent oleanolic acid (1) and tryptamine. The compounds 3a-3c showed a strong induction of apoptosis in HeLa and G-361 cells after 24 h.

Zobrazit více v PubMed

Pollier J., Goossens A. Oleanolic acid. Phytochemistry. 2012;77:10–15. doi: 10.1016/j.phytochem.2011.12.022. PubMed DOI

Fukushima E.O., Seki H., Ohyama K., Ono E., Umemoto N., Mizutani M., Saito K., Muranaka T. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant Cell Physiol. 2011;52:2050–2061. doi: 10.1093/pcp/pcr146. PubMed DOI

Fai Y.M., Tao C.C. A review of presence of oleanolic acid in natural products. Nat. Proda Med. 2009;2:1–271.

Özdemir Z., Bildziukevich U., Wimmerová M., Macůrková A., Lovecká P., Wimmer Z. Plant adaptogens: Natural medicaments for 21st century? ChemistrySelect. 2018;3:2196–2214. doi: 10.1002/slct.201702682. DOI

Džubák P., Hajdúch M., Vydra D., Hustová A., Kvasnica M., Biedermann D., Marková L., Urban M., Šarek J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep. 2006;23:394–411. doi: 10.1039/b515312n. PubMed DOI

Laszczyk M.N. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med. 2009;75:1549–1560. doi: 10.1055/s-0029-1186102. PubMed DOI

Zhou M., Zhang R.-H., Wang M., Xu G.-B., Liao S.-G. Prodrugs of triterpenoids and their derivatives. Eur. J. Med. Chem. 2017;131:222–236. doi: 10.1016/j.ejmech.2017.03.005. PubMed DOI

Garg N.K., Tandel N., Jadon R.S., Tyagi R.K., Katare O.P. Lipid–polymer hybrid nanocarrier-mediated cancer therapeutics: Current status and future directions. Drug Discov. Today. 2018;23:1610–1621. doi: 10.1016/j.drudis.2018.05.033. PubMed DOI

Bildziukevich U., Özdemir Z., Wimmer Z. Recent achievements in medicinal and supramolecular chemistry of betulinic acid and its derivatives. Molecules. 2019;24:3546. doi: 10.3390/molecules24193546. PubMed DOI PMC

Bildziukevich U., Malík M., Özdemir Z., Rárová L., Janovská L., Šlouf M., Šaman D., Šarek J., Nonappa, Wimmer Z. Spermine amides of selected triterpenoid acids: Dynamic supramolecular systems formation influences cytotoxicity of the drugs. J. Mater. Chem. B. 2020;8:484–491. doi: 10.1039/C9TB01957J. PubMed DOI

Guo Z., Xu Y., Peng Y., Rashid H., Quan W., Xie P., Wu L., Jiang J., Wang L., Liu X. Design, synthesis and evaluation of novel (S)-tryptamine derivatives containing an allyl group and an aryl sulfonamide unit as anticancer agents. Bioorg. Med. Chem. Lett. 2019;29:1133–1137. doi: 10.1016/j.bmcl.2019.02.023. PubMed DOI

Choi S., Green D., Ho A., Klein U.D., Taylor R., Turner S. Designing selective, high affinity ligands of 5-HT1D receptor by covalent dimerization of 5-HT1F ligands derived from 4-fluoro-N-[3-(1-methyl-4-piperidinyl)-1H-indol-5-yl]benzamide. J. Med. Chem. 2008;51:3609–3616. doi: 10.1021/jm7011722. PubMed DOI

Faulkner K.C., Hurley K.A., Weibel D.B. 5-Alkyloxytryptamines are membrane-targeting, broad-spectrum antibiotics. Bioorg. Med. Chem. Lett. 2016;26:5539–5544. doi: 10.1016/j.bmcl.2016.10.004. PubMed DOI PMC

Minrovich B.M., Hubble V.B., Barker W.T., Jania L.A., Melander R.J., Koller B.H., Mellander C. Second-generation tryptamine derivatives potently sensitize colistin resistant bacteria to colistin. ACS Med. Chem. Lett. 2019;10:828–833. doi: 10.1021/acsmedchemlett.9b00135. PubMed DOI PMC

Fang J., Huang T., Xia M., Deng L., Hao X., Wang Y., Mu S. Design and synthesis of novel monoterpenoid indole alkaloid-like analogues and their antitumour activities in vitro. Org. Biomol. Chem. 2018;16:3026–3037. doi: 10.1039/C8OB00677F. PubMed DOI

Jose J., Tavares C.D.J., Ebelt N.D., Lodi A., Edupuganti R., Xie X., Devkota A.K., Kaoud T.S., Van Den Berg C.L., Anslyn E.V., et al. Serotonin analogues as inhibitors of breast cancer cell growth. ACS Med. Chem. Lett. 2017;8:1072–1076. doi: 10.1021/acsmedchemlett.7b00282. PubMed DOI PMC

Xiong R., He D., Deng X., Liu J., Lei X., Xie Z., Cao X., Chen Y., Peng J., Tang G. Design, synthesis and biological evaluation of tryptamine salicylic acid derivatives as potential antitumor agents. Med. Chem. Commun. 2019;10:573–583. doi: 10.1039/C8MD00484F. PubMed DOI PMC

Araujo A.M., Carvalho F., de Lourdes Bastos M., de Pinho P.G., Carvalho M. The hallucinogenic world of tryptamines: An updated review. Arch. Toxicol. 2015;89:1151–1173. doi: 10.1007/s00204-015-1513-x. PubMed DOI

Amin N., Shafabakhsh R., Reiter R.J., Asemi Z. Melatonin is an appropriate candidate for breast cancer treatment: Based on known molecular mechanisms. J. Cell. Biochem. 2019;120:12208–12215. doi: 10.1002/jcb.28832. PubMed DOI

Zakki S.A., Muhammad J.S., Li J.-L., Sun L., Li M.-L., Feng Q.-W., Li Y.-L., Cui Z.-G., Inadera H. Melatonin triggers the anticancer potential of phenylarsine oxide via induction of apoptosis through ROS generation and JNK activation. Metallomics. 2020;12:396–407. doi: 10.1039/C9MT00238C. PubMed DOI

Blair J.B., Kurrash-Orbaugh D., Marona-Lewicka D., Cumbay M.G., Watts V.J., Barker E.L., Nichols D.E. Effect of ring fluorination on the pharmacology of hallucinogenic tryptamines. J. Med. Chem. 2000;43:4701–4710. doi: 10.1021/jm000339w. PubMed DOI

Rowland R.S., Taylor R. Intermolecular nonbonded contact distances in organic crystal structures: Comparison with distances expected from van der Waals radii. J. Phys. Chem. 1996;100:7384–7391. doi: 10.1021/jp953141+. DOI

Böhm H.-J., Banner D., Bendels S., Kansy M., Kuhn B., Müller K., Obst-Sander U., Stahl M. Fluorine in Medicinal Chemistry. ChemBioChem. 2004;5:637–643. doi: 10.1002/cbic.200301023. PubMed DOI

Shah P., Westwell A.D. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem. 2007;22:527–540. doi: 10.1080/14756360701425014. PubMed DOI

Campbell I.W., Ewing D.J., Clarke B.F. Therapeutic experience with fluorocortisone in diabetic postural hypotension. Br. Med. J. 1976;1:872–874. doi: 10.1136/bmj.1.6014.872. PubMed DOI PMC

Isanbor C., O’Hagan D. Fluorine in medicinal chemistry: A review of anti-cancer agents. J. Fluor. Chem. 2006;127:303–319. doi: 10.1016/j.jfluchem.2006.01.011. DOI

Sun S., Adejare A. Fluorinated molecules as drugs and imaging agents in the CNS. Curr. Top. Med. Chem. 2006;6:1457–1464. doi: 10.2174/156802606777951046. PubMed DOI

Seca A.M.L., Pinto D.C.G.A. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci. 2018;19:263. doi: 10.3390/ijms19010263. PubMed DOI PMC

Hoenke S., Serbian I., Deigner H.-P., Csuk R. Mitocanic di- and triterpenoid rhodamine B conjugates. Molecules. 2020;25:5443. doi: 10.3390/molecules25225443. PubMed DOI PMC

Khwaza V., Mlala S., Oyedeji O.O., Aderibigbe B.A. Pentacyclic triterpenoids with nitrogen-containing heterocyclic moiety, privileged hybrids in anticancer drug discovery. Molecules. 2021;26:2401. doi: 10.3390/molecules26092401. PubMed DOI PMC

Malík M., Velechovský J., Tlustoš P. Natural pentacyclic triterpenoid acids potentially useful as biocompatible nanocarriers. Fitoterapia. 2021;151:104845. doi: 10.1016/j.fitote.2021.104845. PubMed DOI

Gudoityte E., Arandarcikaite O., Mazeikiene I., Bendokas V., Liobikas J. Ursolic and oleanolic acids: Plant metabolites with neuroprotective potential. Int. J. Mol. Sci. 2021;22:4599. doi: 10.3390/ijms22094599. PubMed DOI PMC

Hoenke S., Christoph M.A., Friedrich S., Heise N., Brandes B., Deigner H.-P., Al-Harrasi A., Csuk R. The presence of a cyclohexyldiamine moiety confers cytotoxicity to pentacyclic triterpenoids. Molecules. 2021;26:2102. doi: 10.3390/molecules26072102. PubMed DOI PMC

Fan J.-P., Lai X.-H., Zhang X.-H., Yang L., Yuan T.-T., Chen H.-P., Liang X. Synthesis and evaluation of the cancer cell growth inhibitory activity of the ionic derivatives of oleanolic acid and ursolic acid with improved solubility. J. Mol. Liquids. 2021;332:115837. doi: 10.1016/j.molliq.2021.115837. DOI

Özdemir Z., Šaman D., Bertula K., Lahtinen M., Bednárová L., Pazderková M., Rárová L., Nonappa, Wimmer Z. Rapid self-healing and thixotropic organogelation of amphiphilic oleanolic acid–spermine conjugates. Langmuir. 2021;37:2693–2706. doi: 10.1021/acs.langmuir.0c03335. PubMed DOI

Bildziukevich U., Rárová L., Šaman D., Wimmer Z. Picolyl amides of betulinic acid as antitumor agents causing tumor cell apoptosis. Eur. J. Med. Chem. 2018;145:41–50. doi: 10.1016/j.ejmech.2017.12.096. PubMed DOI

Advanced Chemistry Development, Software ACD/iLabs, Version 12.02. 2011. [(accessed on 10 September 2021)]. Available online: https://ilabs.eccouncil.org.

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and developmental settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI

Ghose A.K., Viswanadhan V.N., Wendoloski J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999;1:55–68. doi: 10.1021/cc9800071. PubMed DOI

Ha W., Zhao X.-B., Zhao W.-H., Tang J.-J., Shi Y.P. A colon-targeted podophyllotoxin nanoprodrug: Synthesis, characterization, and supramolecular hydrogel formation for the drug combination. J. Mater. Chem. B. 2021;9:3200–3209. doi: 10.1039/D0TB02719G. PubMed DOI

Keum C., Hong J., Kim D., Lee S.-Y., Kim H. Lysozyme-instructed self-assembly of amino-acid-functionalized perylene diimide for multidrug-resistant cancer cells. ACS Appl. Mater. Interfaces. 2021;13:14866–14874. doi: 10.1021/acsami.0c20050. PubMed DOI

Bildziukevich U., Rárová L., Šaman D., Havlíček L., Drašar P., Wimmer Z. Amides derived from heteroaromatic amines and selected steryl hemiesters. Steroids. 2013;78:1347–1352. doi: 10.1016/j.steroids.2013.10.003. PubMed DOI

Bildziukevich U., Vida N., Rárová L., Kolář M., Šaman D., Havlíček L., Drašar P., Wimmer Z. Polyamine derivatives of betulinic acid and β-sitosterol: A comparative investigation. Steroids. 2015;100:27–35. doi: 10.1016/j.steroids.2015.04.005. PubMed DOI

Özdemir Z., Rybková M., Vlk M., Šaman D., Rárová L., Wimmer Z. Synthesis and pharmacological effects of diosgenin–betulinic acid conjugates. Molecules. 2020;25:3546. doi: 10.3390/molecules25153546. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cytotoxicity and Nanoassembly Characteristics of Aromatic Amides of Oleanolic Acid and Ursolic Acid

. 2025 May 27 ; 10 (20) : 20938-20948. [epub] 20250512

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...