Synthesis and Pharmacological Effects of Diosgenin-Betulinic Acid Conjugates
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FV10599
Ministerstvo Průmyslu a Obchodu
FV30300
Ministerstvo Průmyslu a Obchodu
PubMed
32756514
PubMed Central
PMC7435711
DOI
10.3390/molecules25153546
PII: molecules25153546
Knihovny.cz E-zdroje
- Klíčová slova
- ADME parameters, Huisgen copper(I)-catalyzed 1,3-dipolar cycloaddition, adaptogen, betulinic acid, catalytic hydrogenation, conjugate, cytotoxicity, diosgenin,
- MeSH
- cykloadiční reakce MeSH
- diosgenin chemie MeSH
- hydrogenace MeSH
- katalýza MeSH
- kyselina betulinová MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- palladium chemie MeSH
- pentacyklické triterpeny chemie MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- screeningové testy protinádorových léčiv MeSH
- tlak MeSH
- viabilita buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- diosgenin MeSH
- kyselina betulinová MeSH
- palladium MeSH
- pentacyklické triterpeny MeSH
- protinádorové látky MeSH
The target diosgenin-betulinic acid conjugates are reported to investigate their ability to enhance and modify the pharmacological effects of their components. The detailed synthetic procedure that includes copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition (click reaction), and palladium-catalyzed debenzylation by hydrogenolysis is described together with the results of cytotoxicity screening tests. Palladium-catalyzed debenzylation reaction of benzyl ester intermediates was the key step in this synthetic procedure due to the simultaneous presence of a 1,4-disubstituted 1,2,3-triazole ring in the molecule that was a competing coordination site for the palladium catalyst. High pressure (130 kPa) palladium-catalyzed procedure represented a successful synthetic step yielding the required products. The conjugate 7 showed selective cytotoxicity in human T-lymphoblastic leukemia (CEM) cancer cells (IC50 = 6.5 ± 1.1 µM), in contrast to the conjugate 8 showing no cytotoxicity, and diosgenin (1), an adaptogen, for which a potential to be active on central nervous system was calculated in silico. In addition, 5 showed medium multifarious cytotoxicity in human T-lymphoblastic leukemia (CEM), human cervical cancer (HeLa), and human colon cancer (HCT 116). Betulinic acid (2) and the intermediates 3 and 4 showed no cytotoxicity in the tested cancer cell lines. The experimental data obtained are supplemented by and compared with the in silico calculated physico-chemical and absorption, distribution, metabolism, and excretion (ADME) parameters of these compounds.
Zobrazit více v PubMed
Shikov A.N., Pozharitskaya O.N., Makarova M.N., Makarov V.G., Wagner H. Bergenia crassifolia (L.) Fritsch–Pharmacology and phytochemistry. Phytomedicine. 2014;21:1534–1542. doi: 10.1016/j.phymed.2014.06.009. PubMed DOI
Zhu Y., Zhu H., Qiu M., Zhu T., Ni J. Investigation on the mechanisms for biotransformation of saponins to diosgenin. World J. Microbiol. Biotechnol. 2014;30:143–152. doi: 10.1007/s11274-013-1429-7. PubMed DOI
Özdemir Z., Bildziukevich U., Wimmerová M., Macůrková A., Lovecká P., Wimmer Z. Plant adaptogens: Natural medicaments for 21st century? ChemistrySelect. 2018;3:2196–2214. doi: 10.1002/slct.201702682. DOI
Raju J., Mehta R. Cancer Chemopreventive and therapeutic effects of diosgenin, a food saponin. Nutr. Cancer. 2009;61:27–35. doi: 10.1080/01635580802357352. PubMed DOI
Raju J., Patlolla J.M.R., Swamy M.V., Rao C.V. Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells. Biomarkers Prevention. 2004;13:1392–1398. PubMed
Chojnacki J.E., Liu K., Saathoff J.M., Zhang S. Bivalent ligands incorporating curcumin and diosgenin as multifunctional compounds against Alzheimer’s disease. Bioorg. Med. Chem. 2015;23:7324–7331. doi: 10.1016/j.bmc.2015.10.032. PubMed DOI PMC
Šarek J., Kvasnica M., Vlk M., Urban M., Džubák P., Hajdúch M. The Potential of Triterpenoids in the Treatment of Melanoma. In: Murph M., editor. Research on Melanoma-a Glimpse into Current Directions and Future Trends. InTech; Rijeka, Croatia: 2011. pp. 125–158.
Šarek J., Kvasnica M., Vlk M., Biedermann D. Semisynthetic Lupane Derivatives with Cytotoxic Activity. In: Salvador J.A.R., editor. Pentacyclic Triterpenes as Promising Agents in Cancer. Nova Science Publishers; New York, NY, USA: 2010. pp. 159–189.
Pisha E., Chai H., Lee I.-S., Chagwedera T.E., Farnsworth N.R., Cordell G.A., Beecher C.W.W., Fong H.H.S., Kinghorn A.D., Brown D.M., et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat. Med. 1995;1:1046–1051. doi: 10.1038/nm1095-1046. PubMed DOI
Özdemir Z., Bildziukevich U., Šaman D., Havlíček L., Rárová L., Navrátilová L., Wimmer Z. Amphiphilic derivatives of (3β,17β)-3-hydroxyandrost-5-ene-17-carboxylic acid. Steroids. 2017;128:58–67. doi: 10.1016/j.steroids.2017.10.011. PubMed DOI
Bildziukevich U., Vida N., Rárová L., Kolář M., Šaman D., Havlíček L., Drašar P., Wimmer Z. Polyamine derivatives of betulinic acid and β-sitosterol: A comparative investigation. Steroids. 2015;100:27–35. doi: 10.1016/j.steroids.2015.04.005. PubMed DOI
Wimmerová M., Siglerová V., Šaman D., Šlouf M., Kaletová E., Wimmer Z. Improved enzyme-mediated synthesis and supramolecular self-assembly of naturally occurring conjugates of β-sitosterol. Steroids. 2017;117:38–43. doi: 10.1016/j.steroids.2016.09.009. PubMed DOI
Bildziukevich U., Kaletová E., Šaman D., Sievänen E., Kolehmainen E.T., Šlouf M., Wimmer Z. Spectral and microscopic study of self-assembly of novel cationic spermine amides of betulinic acid. Steroids. 2017;117:90–96. doi: 10.1016/j.steroids.2016.07.007. PubMed DOI
Bildziukevich U., Rárová L., Šaman D., Wimmer Z. Picolyl amides of betulinic acid as antitumor agents causing tumor cell apoptosis. Eur. J. Med. Chem. 2018;145:41–50. doi: 10.1016/j.ejmech.2017.12.096. PubMed DOI
Bildziukevich U., Rárová L., Janovská L., Šaman D., Wimmer Z. Enhancing effect of cystamine in its amides with betulinic acid as antimicrobial and antitumor agent in vitro. Steroids. 2019;148:91–98. doi: 10.1016/j.steroids.2019.04.004. PubMed DOI
Bildziukevich U., Malík M., Özdemir Z., Rárová L., Janovská L., Šlouf M., Šaman D., Šarek J., Wimmer Z. Spermine amides of selected triterpenoid acids: Dynamic supramolecular systems formation influences cytotoxicity of the drugs. J. Mater. Chem. B. 2020;8:484–491. doi: 10.1039/C9TB01957J. PubMed DOI
Vlk M., Urban M., Elbert T., Šarek J. Synthesis of selectively deuterated and tritiated lupane derivatives with cytotoxic activity. J. Radioanal. Nucl. Chem. 2013;298:1149–1157. doi: 10.1007/s10967-013-2533-8. DOI
Bori I.D., Hung H.-Y., Qian K., Chen C.-H., Morris-Natschke S.L., Lee K.-H. Anti-AIDS agents 88. Anti-HIV conjugates of betulin and betulinic acid with AZT prepared via click chemistry. Tetrahedron Lett. 2012;53:1987–1989. doi: 10.1016/j.tetlet.2012.02.022. PubMed DOI PMC
Rega M., Jiménez C., Rodríguez J. 6E-Hydroximinosteroid homodimerization by cross-metathesis processes. Steroids. 2007;72:729–735. doi: 10.1016/j.steroids.2007.03.014. PubMed DOI
Berg R., Straub B.F. Advancement in the mechanistic understanding of the copper-catalyzed azide-alkyne cycloaddition. Beilstein J. Org. Chem. 2013;9:2715–2750. doi: 10.3762/bjoc.9.308. PubMed DOI PMC
Brassard C.J., Zhang X., Brewer C.R., Liu P., Clark R.J., Zhu L. Cu(II)-catalyzed oxidative formation of 5,5′-bistriazoles. J. Org. Chem. 2016;81:12091–12105. doi: 10.1021/acs.joc.6b01907. PubMed DOI
Coleman R.S., Shah J.A. Chemoselective cleavage of benzyl ethers, esters, and carbamates in the presence of other easily reducible groups. Synthesis. 1999;S1:1399–1400. doi: 10.1055/s-1999-3664. DOI
Schmidt U., Kroner M., Griesser H. Total synthesis of didemnins; IV.1 Synthesis of peptolide ring and construction of the side chain. Synthesis. 1991;4:294–300. doi: 10.1055/s-1991-26448. DOI
Dov Ben I. The use of hydrogen bromide in acetic acid for the removal of carbobenzoxy groups and benzyl esters of peptide derivative. J. Org. Chem. 1954;19:62–66.
Farooq T., Sydnes L.K., Törnroos K.W., Haug B.E. Debenzylation of functionalized 4- and 5-substituted 1,2,3-triazoles. Synthesis. 2012;44:2070–2078.
Mbaveng A.T., Chi G.F., Nguenang G.S., Abdelfatah S., Sop R.V.T., Ngadjui T., Kuete V., Efferth T. Cytotoxicity of a naturally occurring spirostanol saponin, progenin III, towards a broad range of cancer cell lines by induction of apoptosis, autophagy and necroptosis. Chem. Biol. Interact. 2020;326:109141. doi: 10.1016/j.cbi.2020.109141. PubMed DOI
Advanced Chemistry Development, Version 12.02. Advanced Chemistry Development; Toronto, ON, Canada: 2011. software ACD/iLabs.
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and developmental settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI
Ghose A.K., Viswanadhan V.N., Wendoloski J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Combin. Chem. 1999;1:55–68. doi: 10.1021/cc9800071. PubMed DOI
Dutt R., Garg V., Khatri N., Madan A.K. Phytochemicals in anticancer drug development. Anti-Cancer Agents Med. Chem. 2019;19:172–183. doi: 10.2174/1871520618666181106115802. PubMed DOI
Triterpenoid-PEG Ribbons Targeting Selectivity in Pharmacological Effects