Purine Scaffold in Agents for Cancer Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40385142
PubMed Central
PMC12079222
DOI
10.1021/acsomega.5c00340
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cancer represents one of the most important and often fatal threats in the human population. Regarding the natural products, the purine scaffold appears in the purine bases in nucleic acids. Purine and its natural derivatives display a number of pharmacological effects. Previous investigations revealed that different compounds bearing the purine scaffold in their molecules belong to a group of potent agents for cancer treatment. Therefore, this review focuses on summarizing recently designed agents for potential cancer treatment bearing the purine scaffold as the key structural motif in the molecules. The reviewed structures clearly show the advantages and disadvantages of different substituents of the key scaffold that affect the final cytotoxic effects of the studied structures. The structure-activity relationship analysis shows a summary of different but potent compounds mentioned in this review and identifies the compounds receiving priority importance due to their high cytotoxicity and exceptional physicochemical characteristics. The effects of metal coordination, the formation of convenient conjugated molecules, and supramolecular self-assembly resulting in the production of biologically active nanovesicles and other nanoassemblies are also demonstrated. The reviewed original studies clearly showed the possible advantages of (a) metal ion coordination, (b) the formation of conjugates, and (c) designing smart and biocompatible nanoassemblies for biological activity in comparison with the characteristics of the parent compounds. This review is based on the most recent articles published in the last two years, 2023-2024, and it represents work with a highly interdisciplinary nature. Even if these original articles are not too numerous within the given period, the investigations published therein have clearly documented the importance of the purine scaffold in pharmacology and in medicinal and supramolecular chemistry.
Zobrazit více v PubMed
Saenger W. In Principles of nucleic acid structure; Springer, New York, NY, 1984.
Strauss B. S. Why is DNA double stranded? The discovery of DNA excision repair mechanisms. Genetics 2018, 209, 357–366. 10.1534/genetics.118.300958. PubMed DOI PMC
Wong X. K.; Yeong K. Y. From nucleic acids to drug discovery: Nucleobases as emerging templates for drug candidates. Curr. Med. Chem. 2021, 28, 7076–7121. 10.2174/0929867328666210215113828. PubMed DOI
Das S. K.; Behera B.; Purohit C. S. Scaffolds of purine privilege for biological cytotoxic targets: A review. Pharm. Chem. J. 2023, 57, 777–792. 10.1007/s11094-023-02952-8. DOI
Dar M. O.; Mir R. H.; Mohiuddin R.; Masoodi M. H.; Sofi F. A. Metal complexes of xanthine and its derivatives: Synthesis and biological activity. J. Inorg. Biochem. 2023, 246, 112290.10.1016/j.jinorgbio.2023.112290. PubMed DOI
Chaurasiya A.; Wahan S. K.; Sahu C.; Chawla P. A. An insight into the rational design of recent purine-based scaffolds in targeting various cancer pathways. J. Mol. Struct. 2023, 1274, 134308.10.1016/j.molstruc.2022.134308. DOI
Chaurasiya A.; Sahu C.; Wahan S. K.; Chawla P. A. Targeting cancer through recently developed purine clubbed heterocyclic scaffolds: An overview. J. Mol. Struct. 2023, 1280, 134967.10.1016/j.molstruc.2023.134967. DOI
Bilget Guven E.; Durmaz Sahin I.; Altiparmak D.; Servili B.; Essiz S.; Cetin-Atalay R.; Tuncbilek M. Newly synthesized 6-substituted piperazine/phenyl-9-cyclopentyl containing purine nucleobase analogs act as potent anticancer agents and induce apoptosis via inhibiting Src in hepatocellular carcinoma cells. RSC Med. Chem. 2023, 14, 2658–2676. 10.1039/D3MD00440F. PubMed DOI PMC
Polat M. F.; Sahin I. D.; Atalay R.; Tuncbilek M. Exploration of novel 6,8,9-trisubstituted purine analogues: synthesis, in vitro biological evaluation, and their effect on human cancer cells. Turk. J. Chem. 2024, 48, 108–115. 10.55730/1300-0527.3643. PubMed DOI PMC
Fatih Polat M.; Durmaz Sahin I.; Kul P.; Cetin Atalay R.; Tuncbilek M. Synthesis and cytotoxicity of novel 6,8,9-trisubstituted purine analogs against liver cancer cells. Bioorg. Med. Chem. Lett. 2024, 106, 129775.10.1016/j.bmcl.2024.129775. PubMed DOI
Yun J. I.; Kim H. R.; Park H.; Kim S. K.; Lee J. Small molecule inhibitors of the Hedgehog signaling pathway for the treatment of cancer. Arch. Pharm. Res. 2012, 35, 1317–1333. 10.1007/s12272-012-0801-8. PubMed DOI
Ahadi H.; Emami S. Modification of 7-piperazinylquinolone antibacterials to promising anticancer lead compounds: Synthesis and in vitro studies. Eur. J. Med. Chem. 2020, 187, 111970.10.1016/j.ejmech.2019.111970. PubMed DOI
Tuncbilek M.; Bilget Guven E.; Onder T.; Cetin Atalay R. Synthesis of novel 6-(4-substituted piperazine-1-yl)-9-(β-d-ribofuranosyl)purine derivatives, which lead to senescence-induced cell death in liver cancer cells. J. Med. Chem. 2012, 55, 3058–3065. 10.1021/jm3001532. PubMed DOI
Tuncbilek M.; Kucukdumlu A.ıg.; Guven E. B.; Altiparmak D.; Cetin-Atalay R. Synthesis of novel 6-substituted amino-9-(β-d-ribofuranosyl)purine analogs and their bioactivities on human epithelial cancer cells. Bioorg. Med. Chem. Lett. 2018, 28, 235–239. 10.1016/j.bmcl.2017.12.070. PubMed DOI
Kucukdumlu A.; Tuncbilek M.; Guven E. B.; Atalay R. C. Design, Synthesis and in vitro cytotoxic activity of new 6,9-disubstituted purine analogues. Acta Chim. Slov. 2020, 67, 70–82. 10.17344/acsi.2019.5196. PubMed DOI
Delgado T.; Veselá D.; Dostálová H.; Kryštof V.; Vojáčková V.; Jorda R.; Castro A.; Bertrand J.; Rivera G.; Faundez M.; Strnad M.; Espinosa-Bustos C.; Salas C. O. New inhibitors of Bcr-Abl based on 2,6,9-trisubstituted purine scaffold elicit cytotoxicity in chronic myeloid leukemia-derived cell lines sensitive and resistant to TKIs. Pharmaceutics 2024, 16, 649.10.3390/pharmaceutics16050649. PubMed DOI PMC
Bertrand J.; Dostalova H.; Krystof V.; Jorda R.; Castro A.; Mella J.; Espinosa-Bustos C.; Maria Zarate A.; Salas C. O. New 2,6,9-trisubstituted purine derivatives as Bcr-Abl and Btk inhibitors and as promising agents against leukemia. Bioorg. Chem. 2020, 94, 103361.10.1016/j.bioorg.2019.103361. PubMed DOI
Espinosa-Bustos C.; Bertrand J.; Villegas-Menares A.; Guerrero S.; Di Marcotullio L.; Navacci S.; Schulte G.; Kozielewicz P.; Bloch N.; Villela V.; Paulino M.; Kogan M. J.; Cantero J.; Salas C. O. New smoothened ligands based on the purine scaffold as potential agents for treating pancreatic cancer. Bioorg. Chem. 2024, 151, 107681.10.1016/j.bioorg.2024.107681. PubMed DOI
Honselmann K. C.; Pross M.; Jung C. M.; Wellner U. F.; Deichmann S.; Keck T.; Bausch D. Regulation mechanisms of the hedgehog pathway in pancreatic cancer: a review. J. Pancreas Online (JOP) 2015, 16 (1), 25–32. 10.6092/1590-8577/2894. PubMed DOI
Espinosa-Bustos C.; Mella J.; Soto-Delgado J.; Salas C. O. State of the art of Smo antagonists for cancer therapy: advances in the target receptor and new ligand structures. Future Med. Chem. 2019, 11, 617–638. 10.4155/fmc-2018-0497. PubMed DOI
Narra S.; Munirathinam N. Synthesis, structure analysis, Hirshfeld surface studies, molecular docking studies against cyclin-dependent kinases (CDKs) of sulfonamide decorated N6-benzyl aminopurines for cancer treatment. Res. Chem. 2024, 8, 101592.10.1016/j.rechem.2024.101592. DOI
Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 2006, 57, 431–449. 10.1146/annurev.arplant.57.032905.105231. PubMed DOI
Šmeringai J.; Schrumpfová P. P.; Pernisová M. Cytokinins - regulators of de novo shoot organogenesis. Front. Plant Sci. 2023, 14, 1239133.10.3389/fpls.2023.1239133. PubMed DOI PMC
Zahajská L.; Nisler J.; Voller J.; Gucký T.; Pospíšil T.; Spíchal L.; Strnad M. Preparation, characterization and biological activity of C8-substituted cytokinins. Phytochem. 2017, 135, 115–127. 10.1016/j.phytochem.2016.12.005. PubMed DOI
Kubiasová K.; Mik V.; Nisler J.; Hönig M.; Husičková A.; Spíchal L.; Pěkná Z.; Šamajová O.; Doležal K.; Plíhal O.; Benková E.; Strnad M.; Plíhalová L. Design, synthesis and perception of fluorescently labeled isoprenoid cytokinins. Phytochem. 2018, 150, 1–11. 10.1016/j.phytochem.2018.02.015. PubMed DOI
Voko M. P.; Aremu A. O.; Makunga N. P.; Nisler J.; Dolezal K.; Masondo N. A. The potential applications of cytokinins and cytokinin oxidase/ dehydrogenase inhibitors for mitigating abiotic stresses in model and non-model plant species. Curr. Plant Biol. 2024, 40, 100398.10.1016/j.cpb.2024.100398. DOI
Husseiny E. M.; Abulkhair H. S.; Saleh A.; Altwaijry N.; Zidan R. A.; Abdulrahman F. G. Molecular overlay-guided design of new CDK2 inhibitor thiazepinopurines: Synthesis, anticancer, and mechanistic investigations. Bioorg. Chem. 2023, 140, 106789.10.1016/j.bioorg.2023.106789. PubMed DOI
Attia R. T.; Ewida M. A.; Khaled E.; Fahmy S. A.; Fawzy I. M. Newly synthesized anticancer purine derivatives inhibiting p-EIF4E using surface-modified lipid nanovesicles. ACS Omega 2023, 8, 37864–37881. 10.1021/acsomega.3c02991. PubMed DOI PMC
Sedky N. K.; Abdel-Kader N. M.; Issa M. Y.; Abdelhady M. M. M.; Shamma S. N.; Bakowsky U.; Fahmy S. A. Co-delivery of Ylang Ylang oil of Cananga odorata and oxaliplatin using intelligent pH-sensitive lipid-based nanovesicles for the effective treatment of triple-negative breast cancer. Int. J. Mol. Sci. 2023, 24, 8392.10.3390/ijms24098392. PubMed DOI PMC
Schleser S. W.; Krytovych O.; Ziegelmeier T.; Gross E.; Kasparkova J.; Brabec V.; Weber T.; Schobert R.; Mueller T. Palladium and platinum complexes of the antimetabolite fludarabine with vastly enhanced selectivity for tumour over non-malignant cells. Molecules 2023, 28, 5173.10.3390/molecules28135173. PubMed DOI PMC
Wang Q.; Pan S.; Lei S.; Jin J.; Deng G.; Wang G.; Zhao L.; Zhou M.; Frenking G. Octa-coordinated alkaline earth metal-dinitrogen complexes M(N2)8 (M = Ca, Sr, Ba). Nat. Commun. 2019, 10, 3375.10.1038/s41467-019-11323-5. PubMed DOI PMC
Islam S.; Asaduzzaman; Simol H. A.; Bakshi P. K. Synthesis, characterization, and evaluation of the antimicrobial, cytotoxic properties of alkaline earth metal complexes containing the nucleobase guanine. Chem. Papers 2024, 78, 5545–5561. 10.1007/s11696-024-03494-3. DOI
Bildziukevich U.; Özdemir Z.; Šaman D.; Vlk M.; Šlouf M.; Rárová L.; Wimmer Z. Novel cytotoxic 1,10-phenanthroline-triterpenoid amphiphiles with supramolecular characteristics capable of coordinating 64Cu(II) labels. Org. Biomol. Chem. 2022, 20, 8157–8163. 10.1039/D2OB01172G. PubMed DOI
Alanazi A. S.; Mirgany T. O.; Alsfouk A. A.; Alsaif N. A.; Alanazi M. M. Antiproliferative activity, multikinase inhibition, apoptosis-inducing effects and molecular docking of novel isatin-purine hybrids. Medicina 2023, 59, 610.10.3390/medicina59030610. PubMed DOI PMC
Yang M.; Özdemir Z.; Kim H.; Nah S.; Andris E.; Li X.; Wimmer Z.; Yoon J. Acid-responsive nanoporphyrin evolution for near-infrared fluorescence-guided photo-ablation of biofilm. Adv. Healthcare Mater. 2022, 11, 2200529.10.1002/adhm.202200529. PubMed DOI
Özdemir Z.; Wimmer Z. Selected plant triterpenoids and their amide derivatives in cancer treatment: A review. Phytochem. 2022, 203, 113340.10.1016/j.phytochem.2022.113340. PubMed DOI
Özdemir Z.; Nonappa; Wimmer Z. Triterpenoid building blocks for functional nanoscale assemblies: A review. ACS Appl. Nano Mater. 2022, 5, 16264–16277. 10.1021/acsanm.2c03304. DOI
de O Torres N. M. P.; Cardoso G. d. A.; Silva H.; de Freitas R. P.; Alves R. B. New purine-triazole hybrids as potential anti-breast cancer agents: synthesis, antiproliferative activity, and ADMET in silico study. Med. Chem. Res. 2023, 32, 1816–1831. 10.1007/s00044-023-03115-w. DOI
Rečnik L.-M.; Kandioller W.; Mindt T. L. 1,4-Disubstituted 1,2,3-triazoles as amide bond surrogates for the stabilization of linear peptides with biological activity. Molecules 2020, 25, 3576.10.3390/molecules25163576. PubMed DOI PMC
Burcevs A.; Sebris A.; Traskovskis K.; Chu H.-W.; Chang H.-T.; Jovaisaite J.; Jursenas S.; Turks M.; Novosjolova I. Synthesis of fluorescent C-C bonded triazole-purine conjugates. J. Fluoresc. 2024, 34, 1091–1097. 10.1007/s10895-023-03337-6. PubMed DOI
Özdemir Z.; Rybková M.; Vlk M.; Šaman D.; Rárová L.; Wimmer Z. Synthesis and pharmacological effects of diosgenin-betulinic acid conjugates. Molecules 2020, 25, 3546.10.3390/molecules25153546. PubMed DOI PMC
Özdemir Z.; Šaman D.; Bednárová L.; Pazderková M.; Janovská L.; Nonappa; Wimmer Z. Aging-induced structural transition of nanoscale oleanolic acid amphiphiles and selectivity against Gram-positive bacteria. ACS Appl. Nano Mater. 2022, 5, 3799–3810. 10.1021/acsanm.1c04374. DOI
Bildziukevich U.; Šlouf M.; Rárová L.; Šaman D.; Wimmer Z. Nano-assembly of cytotoxic amides of moronic and morolic acid. Soft Matter 2023, 19, 7625–7634. 10.1039/D3SM01035J. PubMed DOI
Liu X.; Zhang Y.; Wang Y.; Yang M.; Hong F.; Yang S. Protein phosphorylation in cancer: role of nitric oxide signaling pathway. Biomolecules 2021, 11, 1009.10.3390/biom11071009. PubMed DOI PMC
Ridnour L. A.; Thomas D. D.; Switzer C.; Flores-Santana W.; Isenberg J. S.; Ambs S.; Roberts D. D.; Wink D. A. Molecular mechanisms for discrete nitric oxide levels in cancer. Nitric Oxide 2008, 19, 73–76. 10.1016/j.niox.2008.04.006. PubMed DOI PMC
Bormon R.; Srivastava E.; Ali R.; Singh P.; Kumar A.; Verma S. Anti-proliferative, -migratory and -clonogenic effects of long-lasting nitric oxide release in HepG2 cells. Chem. Commun. 2024, 60, 3527–3530. 10.1039/D4CC00232F. PubMed DOI
Yeo C. T.; Stancill J. S.; Oleson B. J.; Schnuck J. K.; Stafford J. D.; Naatz A.; Hansen P. A.; Corbett J. A. Regulation of ATR-dependent DNA damage response by nitric oxide. J. Biol. Chem. 2021, 296, 100388.10.1016/j.jbc.2021.100388. PubMed DOI PMC
Bonfili L.; Gong C.; Lombardi F.; Cifone M. G.; Eleuteri A. M. Strategic modification of gut microbiota through oral bacteriotherapy influences hypoxia inducible factor-1α: Therapeutic implication in Alzheimer’s disease. Int. J. Mol. Sci. 2022, 23, 357.10.3390/ijms23010357. PubMed DOI PMC
Srivastava A.; Srivastava P.; Mathur S.; Abbas S.; Rai N.; Tiwari S.; Tiwari M.; Sharma L. Lipid metabolism and mitochondria: Cross talk in cancer. Curr. Drug Targets 2022, 23, 606–627. 10.2174/1389450122666210824144907. PubMed DOI
Sflakidou E.; Adhikari B.; Siokatas C.; Wolf E.; Sarli V. Development of 2-aminoadenine-based proteolysis-targeting chimeras (PROTACs) as novel potent degraders of monopolar spindle 1 and Aurora kinases. ACS Pharmacol. Transl. Sci. 2024, 7, 3488–3501. 10.1021/acsptsci.4c00405. PubMed DOI PMC
Gomez-Romero P.; Pokhriyal A.; Rueda-Garcia D.; Bengoa L. N.; Gonzalez-Gil R. M. Hybrid materials: A metareview. Chem. Mater. 2024, 36, 8–27. 10.1021/acs.chemmater.3c01878. PubMed DOI PMC