Acid-Responsive Nanoporphyrin Evolution for Near-Infrared Fluorescence-Guided Photo-Ablation of Biofilm
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35536751
DOI
10.1002/adhm.202200529
Knihovny.cz E-zdroje
- Klíčová slova
- MRSA biofilms, NIR fluorescence, acid-responsive nanoporphyrin, phototherapy, structural evolution,
- MeSH
- antibakteriální látky farmakologie MeSH
- biofilmy MeSH
- fotochemoterapie * metody MeSH
- fotosenzibilizující látky farmakologie MeSH
- fototerapie metody MeSH
- methicilin rezistentní Staphylococcus aureus * MeSH
- porfyriny * farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- fotosenzibilizující látky MeSH
- porfyriny * MeSH
Combating biofilm infections remains a challenge due to the shield and acidic conditions. Herein, an acid-responsive nanoporphyrin (PN3-NP) based on the self-assembly of a water-soluble porphyrin derivative (PN3) is constructed. Additional kinetic control sites formed by the conjugation of the spermine molecules to a porphyrin macrocycle make PN3 self-assemble into stable nanoparticles (PN3-NP) in the physiological environment. Noteworthily, near-infrared (NIR) fluorescence monitoring and synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) effects of PN3-NP can be triggered by the acidity in biofilms, accompanied by intelligent transformation into dot-like nanospheres. Thus, damage to normal tissue is effectively avoided and accurate diagnosis and treatment of biofilms is achieved successfully. The good results of fluorescence imaging-guided photo-ablation of antibiotic-resistant strains methicillin-resistant Staphylococcus aureus (MRSA) biofilms verify that PN3-NP is a promising alternative to antibiotics. Meanwhile, this strategy also opens new horizons to engineer smart nano-photosensitizer for accurate diagnosis and treatment of biofilms.
Department of Chemistry and Nanoscience Ewha Womans University Seoul 03760 Republic of Korea
Seoul Center Korea Basic Science Institute Seoul 02841 Republic of Korea
Zobrazit více v PubMed
a) V. M. Vaughn, T. N. Gandhi, L. A. Petty, P. K. Patel, H. C. Prescott, A. N. Malani, D. Ratz, E. McLaughlin, V. Chopra, S. A. Flanders, Clin. Infect. Dis. 2021, 72, e533;
b) F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, J. Xiang, Y. Wang, B. Song, X. Gu, L. Guan, Y. Wei, H. Li, X. Wu, J. Xu, S. Tu, Y. Zhang, H. Chen, B. Cao, Lancet 2020, 395, 1054.
a) Y. Zhang, D. Li, J. Tan, Z. Chang, X. Liu, W. Ma, Y. Xu, Small 2021, 17, e2005739;
b) A. Gupta, R. F. Landis, C. H. Li, M. Schnurr, R. Das, Y. W. Lee, M. Yazdani, Y. Liu, A. Kozlova, V. M. Rotello, J. Am. Chem. Soc. 2018, 140, 12137.
a) R. F. Landis, A. Gupta, Y. W. Lee, L. S. Wang, B. Golba, B. Couillaud, R. Ridolfo, R. Das, V. M. Rotello, ACS Nano 2017, 11, 946;
b) H. C. Flemming, J. Wingender, Nat. Rev. Microbiol. 2010, 8, 623.
a) G. A. O'Toole, J. Visualized Exp. 2011, 47, e2437;
b) C. Wang, P. Chen, Y. Qiao, Y. Kang, C. Yan, Z. Yu, J. Wang, X. He, H. Wu, Theranostics 2020, 10, 4795;
c) C. R. Arciola, D. Campoccia, L. Montanaro, Nat. Rev. Microbiol. 2018, 16, 397.
Y. Liu, L. Shi, L. Su, H. C. van der Mei, P. C. Jutte, Y. Ren, H. J. Busscher, Chem. Soc. Rev. 2019, 48, 428.
a) U. E. S. Gunter Weiss, Immunol. Rev. 2015, 264, 182;
b) Z. Yuan, B. Tao, Y. He, C. Mu, G. Liu, J. Zhang, Q. Liao, P. Liu, K. Cai, Biomaterials 2019, 223, 119479;
c) A. Vishwakarma, F. Dang, A. Ferrell, H. A. Barton, A. Joy, J. Am. Chem. Soc. 2021, 143, 9440;
d) R. F. Landis, C. H. Li, A. Gupta, Y. W. Lee, M. Yazdani, N. Ngernyuang, I. Altinbasak, S. Mansoor, M. A. S. Khichi, A. Sanyal, V. M. Rotello, J. Am. Chem. Soc. 2018, 140, 6176.
a) X. Li, J. F. Lovell, J. Yoon, X. Chen, Nat. Rev. Clin. Oncol. 2020, 17, 657;
b) X. Zhao, S. Long, M. Li, J. Cao, Y. Li, L. Guo, W. Sun, J. Du, J. Fan, X. Peng, J. Am. Chem. Soc. 2020, 142, 1510.
N. Zhao, L. Yan, X. Zhao, X. Chen, A. Li, D. Zheng, X. Zhou, X. Dai, F. J. Xu, Chem. Rev. 2019, 119, 1666.
a) J. Li, Z. Li, X. Liu, C. Li, Y. Zheng, K. W. K. Yeung, Z. Cui, Y. Liang, S. Zhu, W. Hu, Y. Qi, T. Zhang, X. Wang, S. Wu, Nat. Commun. 2021, 12, 1224;
b) R. Wang, D. Kim, M. Yang, X. Li, J. Yoon, ACS Appl. Mater. Interfaces 2022, 14, 7609.
a) X. Li, N. Kwon, T. Guo, Z. Liu, J. Yoon, Angew. Chem., Int. Ed. 2018, 57, 11522;
b) M. Yang, X. Li, J. Yoon, Mater. Chem. Front. 2021, 5, 1683;
c) B. M. Luby, C. D. Walsh, G. Zheng, Angew. Chem., Int. Ed. 2019, 58, 2558;
d) X. Wu, M. Yang, J. S. Kim, R. Wang, G. Kim, J. Ha, H. Kim, Y. Cho, K. T. Nam, J. Yoon, Angew. Chem., Int. Ed. 2022, 61, e202200808;
e) H. Li, L. Zhang, J. Han, D. Kim, H. Kim, J. Ha, J. Wang, J. Yoon, CCS Chem. 2022, 4, 487.
a) J. F. Lovell, T. W. B. Liu, J. Chen, G. Zheng, Chem. Rev. 2010, 110, 2839;
b) X. Li, B.-D. Zheng, X.-H. Peng, S.-Z. Li, J.-W. Ying, Y. Zhao, J.-D. Huang, J. Yoon, Coord. Chem. Rev. 2019, 379, 147;
c) E. S. Nyman, P. H. Hynninen, J. Photochem. Photobiol., B 2004, 73, 1;
d) Z. Yu, W. Pan, N. Li, B. Tang, Chem. Sci. 2016, 7, 4237;
e) F. Schmitt, J. Freudenreich, N. P. Barry, L. Juillerat-Jeanneret, G. Suss-Fink, B. Therrien, J. Am. Chem. Soc. 2012, 134, 754;
f) W. Sun, X. Zhao, J. Fan, J. Du, X. Peng, Small 2019, 15, e1804927.
X. Li, S. Kolemen, J. Yoon, E. U. Akkaya, Adv. Funct. Mater. 2017, 27, 1604053.
M. Ethirajan, Y. Chen, P. Joshi, R. K. Pandey, Chem. Soc. Rev. 2011, 40, 340.
a) Q. Zou, M. Abbas, L. Zhao, S. Li, G. Shen, X. Yan, J. Am. Chem. Soc. 2017, 139, 1921;
b) J. F. Lovell, C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, G. Zheng, Nat. Mater. 2011, 10, 324;
c) Z. H. Yu, X. Li, F. Xu, X. L. Hu, J. Yan, N. Kwon, G. R. Chen, T. Tang, X. Dong, Y. Mai, D. Chen, J. Yoon, X. P. He, H. Tian, Angew. Chem., Int. Ed. 2020, 59, 3658.
H. Chen, Y. Qiu, D. Ding, H. Lin, W. Sun, G. D. Wang, W. Huang, W. Zhang, D. Lee, G. Liu, J. Xie, X. Chen, Adv. Mater. 2018, 30, 1802748.
S. S. Lucky, K. C. Soo, Y. Zhang, Chem. Rev. 2015, 115, 1990.
B. Sun, R. Chang, S. Cao, C. Yuan, L. Zhao, H. Yang, J. Li, X. Yan, J. C. M. van Hest, Angew. Chem., Int. Ed. 2020.
a) A. Baelo, R. Levato, E. Julian, A. Crespo, J. Astola, J. Gavalda, E. Engel, M. A. Mateos-Timoneda, E. Torrents, J. Controlled Release 2015, 209, 150;
b) M. D. Adhikari, S. Goswami, B. R. Panda, A. Chattopadhyay, A. Ramesh, Adv. Healthcare Mater. 2013, 2, 599;
c) D. Mao, F. Hu, Kenry, G. Q.i, S. Ji, W. Wu, D. Kong, B. Liu, Mater. Horiz. 2020, 7, 1138.
D. Hu, Y. Deng, F. Jia, Q. Jin, J. Ji, ACS Nano 2020, 14, 347.
Z. Özdemir, D. Saman, K. Bertula, M. Lahtinen, L. Bednarova, M. Pazderkova, L. Rarova, Nonappa, Z. W., Langmuir 2021, 37, 2693.
J. Wang, K. Liu, R. Xing, X. Yan, Chem. Soc. Rev. 2016, 45, 5589.
R. Joseph, A. Naugolny, M. Feldman, I. M. Herzog, M. Fridman, Y. Cohen, J. Am. Chem. Soc. 2016, 138, 754.
a) Y. Zhao, X. Cai, Y. Zhang, C. Chen, J. Wang, R. Pei, Nanoscale 2019, 11, 12250;
b) S. I. Kawano, S. Kawada, Y. Kitagawa, R. Teramoto, M. Nakano, K. Tanaka, Chem. Commun. 2019, 55, 2992.
A. Gupta, S. Mumtaz, C. H. Li, I. Hussain, V. M. Rotello, Chem. Soc. Rev. 2019, 48, 415.
Z. Sattar, H. Iranfar, A. Asoodeh, M. R. Saberi, M. Mazhari, J. Chamani, Spectrochim. Acta, Part A 2012, 97, 1089.
X. Wu, L. Li, W. Shi, Q. Gong, H. Ma, Angew. Chem., Int. Ed. 2016, 55, 14728.
a) E. Blanco, H. Shen, M. Ferrari, Nat. Biotechnol. 2015, 33, 941;
b) R. Huang, C. H. Li, R. Cao-Milan, L. D. He, J. M. Makabenta, X. Zhang, E. Yu, V. M. Rotello, J. Am. Chem. Soc. 2020, 142, 10723.
L. Yang, Z. Zhou, J. Song, X. Chen, Chem. Soc. Rev. 2019, 48, 5140.
a) B. Huang, J. Tian, D. Jiang, Y. Gao, W. Zhang, Biomacromolecules 2019, 20, 3873;
b) B. Huang, X. Liu, G. Yang, J. Tian, Z. Liu, Y. Zhu, X. Li, G. Yin, W. Zheng, L. Xu, W. Zhang, CCS Chem. 2021, 3, 2055.
R. Xing, Q. Zou, C. Yuan, L. Zhao, R. Chang, X. Yan, Adv. Mater. 2019, 31, 1900822.
a) V. N. Nguyen, S. Qi, S. Kim, N. Kwon, G. Kim, Y. Yim, S. Park, J. Yoon, J. Am. Chem. Soc. 2019, 141, 16243;
b) W. Wu, D. Mao, S. Xu, Kenry, F. H.u, X. Li, D. Kong, B. Liu, Chem 2018, 4, 1937.
C. M. A. Gangemi, R. Randazzo, M. E. Fragalà, G. A. Tomaselli, F. P. Ballistreri, A. Pappalardo, R. M. Toscano, G. Trusso Sfrazzetto, R. Purrello, A. D'Urso, New J. Chem. 2015, 39, 6722.
P. Kubat, K. Lang, P. Jandal, O. Frank, I. Matulkova, J. Sykora, S. Civis, M. Hof, L. Kavan, J. Nanosci. Nanotechnol. 2009, 9, 5795.
A. Gorski, S. Gawinkowski, А. Starukhin, L. Gladkov, N. Chizhova, N. Mamardashvili, I. Scheblykin, J. Waluk, J. Mol. Struct. 2014, 1058, 197.
A. Antonoplis, X. Zang, M. A. Huttner, K. K. L. Chong, Y. B. Lee, J. Y. Co, M. R. Amieva, K. A. Kline, P. A. Wender, L. Cegelski, J. Am. Chem. Soc. 2018, 140, 16140.
B. Ran, Y. Yuan, W. Xia, M. Li, Q. Yao, Z. Wang, L. Wang, X. Li, Y. Xu, X. Peng, Chem. Sci. 2020, 12, 1054.
D. Hu, H. Li, B. Wang, Z. Ye, W. Lei, F. Jia, Q. Jin, K. F. Ren, J. Ji, ACS Nano 2017, 11, 9330.
Purine Scaffold in Agents for Cancer Treatment
Saponins of Selected Triterpenoids as Potential Therapeutic Agents: A Review