Saponins of Selected Triterpenoids as Potential Therapeutic Agents: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36986485
PubMed Central
PMC10055990
DOI
10.3390/ph16030386
PII: ph16030386
Knihovny.cz E-zdroje
- Klíčová slova
- glycoconjugate, lupane, oleanane, pharmacological effects, saponin, ursane,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Saponins represent important natural derivatives of plant triterpenoids that are secondary plant metabolites. Saponins, also named glycoconjugates, are available both as natural and synthetic products. This review is focused on saponins of the oleanane, ursane, and lupane types of triterpenoids that include several plant triterpenoids displaying various important pharmacological effects. Additional convenient structural modifications of naturally-occurring plant products often result in enhancing the pharmacological effects of the parent natural structures. This is an important objective for all semisynthetic modifications of the reviewed plant products, and it is included in this review paper as well. The period covered by this review (2019-2022) is relatively short, mainly due to the existence of previously published review papers in recent years.
Zobrazit více v PubMed
Gudoityte E., Arandarcikaite O., Mazeikiene I., Bendokas V., Liobikas J. Ursolic and Oleanolic Acids: Plant metabolites with neuroprotective potential. Int. J. Mol. Sci. 2021;22:4599. doi: 10.3390/ijms22094599. PubMed DOI PMC
De Souza Miranda R., da Silva Mascarenhas de Jesus B., da Silva Luiz S.R., Viana C.B., Malafaia C.R.A., de Souza Figueiredo F., Carvalho T.S.C., Silva M.L., Londero V.S., da Costa-Silva T.A., et al. Antiinflammatory activity of natural triterpenes—An overview from 2006 to 2021. Phytother. Res. 2022;36:1459–1506. doi: 10.1002/ptr.7359. PubMed DOI
Özdemir Z., Wimmer Z. Selected plant triterpenoids and their amide derivatives in cancer treatment: A review. Phytochemistry. 2022;203:113340. doi: 10.1016/j.phytochem.2022.113340. PubMed DOI
Lu Y., Van D., Deibert L., Bishop G., Balsevich J. Antiproliferative quillaic acid and gypsogenin saponins from Saponaria officinalis L. roots. Phytochemistry. 2015;113:108–120. doi: 10.1016/j.phytochem.2014.11.021. PubMed DOI
Arslan I. Quillaic acid–Containing saponin-based immunoadjuvants trigger early immune responses. Rev. Brasil. Farmacognosia. 2020;30:467–473. doi: 10.1007/s43450-020-00080-y. DOI
Mohammed E.A.H., Peng Y., Wang Z., Qiang X., Zhao Q. Synthesis, antiviral, and antibacterial activity of the glycyrrhizic acid and glycyrrhetinic acid derivatives. Russ. J. Bioorg. Chem. 2022;48:906–918. doi: 10.1134/S1068162022050132. PubMed DOI PMC
Tan D., Tseng H.H.L., Zhong Z., Wang S., Vong C.T., Wang Y. Glycyrrhizic acid and its derivatives: Promising candidates for the management of type 2 diabetes mellitus and its complications. Int. J. Mol. Sci. 2022;23:10988. doi: 10.3390/ijms231910988. PubMed DOI PMC
Pollier J., Goossens A. Oleanolic acid. Phytochemistry. 2012;77:10–15. doi: 10.1016/j.phytochem.2011.12.022. PubMed DOI
Wozniak L., Skapska S., Marszalek K. Ursolic acid–A pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules. 2015;20:20614–20641. doi: 10.3390/molecules201119721. PubMed DOI PMC
Muru K., Gauthier C. Glycosylation and protecting group strategies towards the synthesis of saponins and bacterial oligosaccharides: A personal account. Chem. Rec. 2021;21:2990–3004. doi: 10.1002/tcr.202000181. PubMed DOI
Li W., Yu B. Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chem. Soc. Rev. 2018;47:7954–7984. doi: 10.1039/C8CS00209F. PubMed DOI
Yang Y.-H., Dai S.-Y., Deng F.-H., Peng L.-H., Li C., Pei Y.-H. Recent advances in medicinal chemistry of oleanolic acid derivatives. Phytochemistry. 2022;203:113397. doi: 10.1016/j.phytochem.2022.113397. PubMed DOI
Antoniou C., Hull J. The anti-cancer effect of Olea europaea L. products: A review. Curr. Nutr. Rep. 2021;10:99–124. doi: 10.1007/s13668-021-00350-8. PubMed DOI PMC
Jäger S., Trojan H., Kopp T., Laszczyk M.N., Scheffler A. Pentacyclic triterpene distribution in various plants-Rich sources for a new group of multi-potent plant extracts. Molecules. 2009;14:2016–2031. doi: 10.3390/molecules14062016. PubMed DOI PMC
Shanmugam M.K., Dai X., Kumar A.P., Tan B.K.H., Sethi G., Bishayee A. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: Preclinical and clinical evidence. Cancer Lett. 2014;346:206–216. doi: 10.1016/j.canlet.2014.01.016. PubMed DOI PMC
Patocka J., Bhardwaj K., Klimova B., Nepovimova E., Wu Q., Landi M., Kuca K., Valis M., Wu W. Malus domestica: A review on nutritional features, chemical composition, traditional and medicinal value. Plants. 2020;9:1408. doi: 10.3390/plants9111408. PubMed DOI PMC
Raal A. Birch (Betula spp.) In: Awaad A.S., Singh V.K., Govil J.N., editors. Drug Plants II, Recent Progress in Medicinal Plants. Vol. 28. Studium Press/NHBS; Totnes, UK: 2010. pp. 121–142.
Cichewicz R.H., Kouzi S.A. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med. Res. Rev. 2004;24:90–114. doi: 10.1002/med.10053. PubMed DOI
Bag B.G., Majumdar R. Self-assembly of renewable nano-sized triterpenoids. Chem. Rec. 2017;17:841–873. doi: 10.1002/tcr.201600123. PubMed DOI
Bag B.G., Hasan S.N., Ghorai S., Panja S.K. First self-assembly of dihydroxy triterpenoid maslinic acid yielding vesicles. ACS Omega. 2019;4:7684–7690. doi: 10.1021/acsomega.8b03667. DOI
Bag B.G., Garai C., Ghorai S. Vesicular self-assembly of a natural ursane-type dihydroxy-triterpenoid corosolic acid. RSC Adv. 2019;9:15190–15195. doi: 10.1039/C9RA02801C. PubMed DOI PMC
Bag B.G., Barai A.C., Hasan S.N., Panja S.K., Ghorai S., Patra S. Terpenoids, nano-entities and molecular self-assembly. Pure Appl. Chem. 2020;92:567–577. doi: 10.1515/pac-2019-0812. DOI
Wimmerová M., Siglerová V., Šaman D., Šlouf M., Kaletová E., Wimmer Z. Improved enzyme-mediated synthesis and supramolecular self-assembly of naturally occurring conjugates of β-sitosterol. Steroids. 2017;117:38–43. doi: 10.1016/j.steroids.2016.09.009. PubMed DOI
Bildziukevich U., Kaletová E., Šaman D., Sievänen E., Kolehmainen E.T., Šlouf M., Wimmer Z. Spectral and microscopic study of self-assembly of novel cationic spermine amides of betulinic acid. Steroids. 2017;117:90–96. doi: 10.1016/j.steroids.2016.07.007. PubMed DOI
Bildziukevich U., Malík M., Özdemir Z., Rárová L., Janovská L., Šlouf M., Šaman D., Šarek J., Nonappa, Wimmer Z. Spermine amides of selected triterpenoid acids: Dynamic supramolecular system formation influences the cytotoxicity of the drugs. J. Mater. Chem. B. 2020;8:484–491. doi: 10.1039/C9TB01957J. PubMed DOI
Özdemir Z., Šaman D., Bednárová L., Pazderková M., Janovská L., Nonappa, Wimmer Z. Aging-induced structural transition of nanoscale oleanolic acid amphiphiles and selectivity against Gram-positive bacteria. ACS Appl. Nano Mater. 2022;5:3799–3810. doi: 10.1021/acsanm.1c04374. DOI
Bildziukevich U., Özdemir Z., Šaman D., Vlk M., Šlouf M., Rárová L., Wimmer Z. Novel cytotoxic 1,10-phenanthroline–triterpenoid amphiphiles with supramolecular characteristics capable of coordinating 64Cu(II) labels. Org. Biomol. Chem. 2022;20:8157–8163. doi: 10.1039/D2OB01172G. PubMed DOI
Özdemir Z., Nonappa, Wimmer Z. Triterpenoid building blocks for functional nanoscale assemblies: A review. ACS Appl. Nano Mater. 2022;5:16264–16277. doi: 10.1021/acsanm.2c03304. DOI
Ramos-Soriano J., Ghirardello M., Galan M.C. Recent advances in multivalent carbon nanoform-based glycoconjugates. Curr. Med. Chem. 2022;29:1232–1257. doi: 10.2174/0929867328666210714160954. PubMed DOI
Schijns V., Majhen D., van der Ley P., Thakur A., Summerfield A., Berisio R., Nativi C., Fernandez-Tejada A., Alvarez-Dominguez C., Gizurarson S., et al. Rational vaccine design in times of emerging diseases: The critical choices of immunological correlates of protection, vaccine antigen and immunomodulation. Pharmaceutics. 2021;13:501. doi: 10.3390/pharmaceutics13040501. PubMed DOI PMC
Yang W., Chen X., Li Y., Guo S., Wang Z., Yu X. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun. 2020;15:1–13. doi: 10.1177/1934578X20903555. DOI
Mioc M., Milan A., Malita D., Mioc A., Prodea A., Rakoviceanu R., Ghiulai R., Cristea A., Caruntu F., Soica C. Recent advances regarding the molecular mechanisms of triterpenic acids: A review (part I) Int. J. Mol. Sci. 2022;23:7740. doi: 10.3390/ijms23147740. PubMed DOI PMC
Hordyjewska A., Ostapiuk A., Horecka A., Kurzepa J. Betulin and betulinic acid: Triterpenoids derivatives with a powerful biological potential. Phytochem. Rev. 2019;18:929–951. doi: 10.1007/s11101-019-09623-1. DOI
Juang Y.-P., Liang P.-H. Biological and pharmacological effects of synthetic saponins. Molecules. 2020;25:4974. doi: 10.3390/molecules25214974. PubMed DOI PMC
Thu H.N.T., Huong D.N.H., Dieu T.N.T., Ngoc H.T.T., Van H.P., Ngoc A.H.T., Xuan H.N., Pham N.K., Manh C.N., Toan P.N.H. In vitro and in silico cytotoxic activities of triterpenoids from the leaves of Aralia dasyphylla Miq. and the assessment of their ADMET properties. J. Biomol. Struct. Dyn. 2022 doi: 10.1080/07391102.2022.2098822. PubMed DOI
Nguyen H.D. Two new triterpenoid saponins from the underground parts of Weigela x “Bristol Ruby”. J. Asian Nat. Prod. Res. 2022 doi: 10.1080/10286020.2022.2084586. PubMed DOI
Rezgui A., Mitaine-Offer A.C., Miyamoto T., Tanaka C., Delemasure S., Dutartre P., Lacaille-Dubois M.A. Oleanolic acid and hederagenin glycosides from Weigela stelzneri. Phytochemistry. 2016;123:40–47. doi: 10.1016/j.phytochem.2015.12.016. PubMed DOI
Lim H.J., Jie E.Y., Park I.S., Kim S.J., Ahn W.S., Jeong S.I., Kim S.W., Jung C.H. Anti-inflammatory effects of Weigela subsessilis callus extract via suppression of MAPK and NF-κB signaling. Plants. 2021;10:1635. doi: 10.3390/plants10081635. PubMed DOI PMC
Thuong P.T., Min B.-S., Jin W., Na M., Lee J., Seong R., Lee Y.-M., Song K., Seong Y., Lee H.-K., et al. Anti-complementary activity of ursane-type triterpenoids from Weigela subsessilis. Biol. Pharm. Bull. 2006;29:830–833. doi: 10.1248/bpb.29.830. PubMed DOI
Won Y.M., Seong Z.K., Kim J.L., Kim H.S., Song H.H., Kim D.Y., Kim J.H., Oh S.R., Cho H.W., Cho J.H., et al. Triterpene glycosides with stimulatory activity on melanogenesis from the aerial parts of Weigela subsessilis. Arch. Pharm. Res. 2015;38:1541–1551. doi: 10.1007/s12272-014-0524-0. PubMed DOI
Nguyen D.H., Mitaine-Offer A.C., Miyamoto T., Tanaka C., Bellaye P.S., Collin B., Chambin O., Lacaille-Dubois M.A. Phytochemical analysis of two Weigela florida cultivars, “Pink Poppet” and “Jean’s Gold”. Phytochem. Lett. 2020;37:85–89. doi: 10.1016/j.phytol.2020.04.009. DOI
Andriamisaina N., Mitaine-Offer A.C., Pruvot B., Chluba J., Miyamoto T., Tanaka C., Lacaille-Dubois M.A. Phytochemistry of Weigela x “kosteriana variegata” (Caprifoliaceae) Nat. Prod. Commun. 2018;13:403–406. doi: 10.1177/1934578X1801300406. DOI
Nguyen D.H., Mitaine-Offer A.C., Maroso S., Papini A.M., Paululat T., Bellaye P.S., Collin B., Chambin O., Lacaille-Dubois M.A. Cytotoxic glycosides from the roots of Weigela x “Bristol Ruby”. Fitoterapia. 2019;137:104242. doi: 10.1016/j.fitote.2019.104242. PubMed DOI
Champy-Tixier A.S., Mitaine-Offer A.C., Fernandez F.R., Miyamoto T., Tanaka C., Papini A.M., Lacaille-Dubois M.A. Oleanane-type glycosides from the roots of Weigela florida “rumba” and evaluation of their antibody recognition. Fitoterapia. 2018;128:198–203. doi: 10.1016/j.fitote.2018.04.017. PubMed DOI
Hobloss S., Bruguiere A., Champy-Tixier A.-S., Miyamoto T., Tanaka C., Dessertaine S., Sautour M., Lacaille-Dubois M.-A., Mitaine-Offer A.-C. Oleanane-type glycosides from Weigela x Styriaca and two cultivars of W. florida: “Minor black” and “Brigela”. Phytochemistry Lett. 2022;50:77–84. doi: 10.1016/j.phytol.2022.05.010. DOI
Aouane C., Kabouche A., Voutquenne-Nazabadioko L., Sayagh C., Martinez A., Magid A.A., Kabouche Z. Triterpenoid saponins from Anagallis monelli ssp. linifolia (L.) Maire and their chemotaxonomic significance. Phytochemistry. 2022;202:113305. PubMed
Zulkifli S.Z., Ab Ghani N., Rasol N.E., Salleh W.M.N.H.W., Ismail N.H. Lepiginosides A-D: Three new triterpenoid saponins and a new farnesyl glycoside from the stembarks of Lepisanthes rubiginosa (roxb.) Leenh. Nat. Prod. Res. 2022 doi: 10.1080/14786419.2022.2102629. PubMed DOI
Tran L.V., Thi N., Thi L., Van Tran C., Vo N.T.Q., Ho A.N., Tran T.T.P. Two new glycosides, farnesyl pentaglycoside and oleanane triglycoside from Lepisanthes rubiginosa, a mangrove plant collected from Thua Thien-Hue province, Vietnam. Nat. Prod. Res. 2022;36:1774–1780. doi: 10.1080/14786419.2020.1817010. PubMed DOI
Hasan M.M., Hossain A., Shamim A., Rahmam M.M. Phytochemical and pharmacological evaluation of ethanolic extract of Lepisanthes rubiginosa leaves. BMC Complement. Altern. Med. 2017;17:1–11. doi: 10.1186/s12906-017-2010-y. PubMed DOI PMC
Yang Y., Mouri A., Lu Q., Kunisawa K., Kubota H., Hasegawa M., Hirakawa M., Mori Y., Libo Z., Saito K., et al. Loureirin C and xanthoceraside prevent abnormal behaviors associated with downregulation of brain derived neurotrophic factor and AKT/mTOR/CREB signaling in the prefrontal cortex induced by chronic corticosterone exposure in mice. Neurochem. Res. 2022;47:2865–2879. doi: 10.1007/s11064-022-03694-x. PubMed DOI
Pereira G.C., Roversi K., Trevisan G., Burger M.E., Bochi G.V. Glucocorticoid and brain-derived neurotrophic factor relationship: A brief investigation into the model of depression by chronic administration of corticosterone. Behav. Pharmacol. 2020;31:407–412. doi: 10.1097/FBP.0000000000000547. PubMed DOI
Yau L.-F., Huang H., Tong T.-T., Bai L.-B., Zhu G.-Y., Hou Y., Bai G., Jiang Z.-H. Characterization of deglycosylated metabolites of platycosides reveals their biotransformation after oral administration. Food Chem. 2022;393:133383. doi: 10.1016/j.foodchem.2022.133383. PubMed DOI
Li Y., Sun Y., Ren G., Jiang D., Liu C. Functional characterization and substrate promiscuity analysis of UDP-glucose dehydrogenases from licorice (Glycyrrhiza uralensis) J. Mol. Struct. 2022;1265:133355. doi: 10.1016/j.molstruc.2022.133355. DOI
Qiao X., Wang Q., Wang S., Kuang Y., Li K., Song W., Ye M. A 42-markers pharmacokinetic study reveals interactions of berberine and glycyrrhizic acid in the anti-diabetic Chinese medicine formula Gegen-Qinlian decoction. Front. Pharmacol. 2018;9:622. doi: 10.3389/fphar.2018.00622. PubMed DOI PMC
Wang X., Zhang H., Chen L., Shan L., Fan G., Gao X. Liquorice, a unique guide drug of traditional Chinese medicine: A review of its role in drug interactions. J. Ethnopharmacol. 2013;150:781–790. doi: 10.1016/j.jep.2013.09.055. PubMed DOI
Kao T.C., Wu C.H., Yen G.C. Bioactivity and potential health benefits of licorice. J. Agric. Food Chem. 2014;62:542–553. doi: 10.1021/jf404939f. PubMed DOI
Huo H.Z., Wang B., Liang Y.K., Bao Y.Y., Gu Y. Hepatoprotective and Antioxidant effects of licorice extract against Ccl (4)-induced oxidative damage in rats. Int. J. Mol. Sci. 2011;12:6529–6543. doi: 10.3390/ijms12106529. PubMed DOI PMC
Simayi Z., Rozi P., Yang X., Ababaikeri G., Maimaitituoheti W., Bao X., Yadikar N. Isolation, structural characterization, biological activity, and application of Glycyrrhiza polysaccharides: Systematic review. Int. J. Biol. Macromol. 2021;183:387–398. doi: 10.1016/j.ijbiomac.2021.04.099. PubMed DOI
Wang L., Yang R., Yuan B., Liu Y., Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B. 2015;5:310–315. doi: 10.1016/j.apsb.2015.05.005. PubMed DOI PMC
Wang Z.F., Liu J., Yang Y.A., Zhu H.L. A review: The anti-inflammatory, anticancer and antibacterial properties of four kinds of licorice flavonoids isolated from licorice. Curr. Med. Chem. 2020;27:1997–2011. doi: 10.2174/0929867325666181001104550. PubMed DOI
Sharifi-Rad J., Quispe C., Herrera-Bravo J., Belen L.H., Kaur R., Kregiel D., Suleria H.A.R. Glycyrrhiza genus: Enlightening phytochemical components for pharmacological and health-promoting abilities. Oxid. Med. Cell. Longev. 2021:7571132. doi: 10.1155/2021/7571132. PubMed DOI PMC
Kim S.H., Hong J.H., Yang W.K., Geum J.H., Kim H.R., Choi S.Y., Lee Y.C. Herbal combinational medication of Glycyrrhiza glabra, Agastache rugosa containing glycyrrhizic acid, tilianin inhibits neutrophilic lung inflammation by affecting Cxcl2, interleukin-17/Stat3 signal pathways in a murine model of COPD. Nutrients. 2020;12:926. doi: 10.3390/nu12040926. PubMed DOI PMC
Rani K., Devi N., Saharan V., Kharb P. Glycyrrhiza glabra: An insight to nanomedicine. J. Nanosci. Nanotechnol. 2021;21:3367–3378. doi: 10.1166/jnn.2021.19007. PubMed DOI
Zhang Q.H., Huang H.Z., Qiu M., Wu Z.F., Xin Z.C., Cai X.F., Han L. Traditional uses, pharmacological effects, and molecular mechanisms of licorice in potential therapy of Covid-19. Front. Pharmacol. 2021;12:719758. doi: 10.3389/fphar.2021.719758. PubMed DOI PMC
Yang R., Yuan B.C., Ma Y.S., Zhou S., Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm. Biol. 2017;55:15–18. doi: 10.1080/13880209.2016.1225775. PubMed DOI PMC
Song W., Si L., Ji S., Wang H., Fang X.M., Yu L.Y., Li R.Y., Liang L.N., Zhou D., Ye M. Uralsaponins M-Y, Antiviral triterpenoid saponins from the roots of Glycyrrhiza uralensis. J. Nat. Prod. 2014;77:1632–1643. doi: 10.1021/np500253m. PubMed DOI
Marciani D.J. Effects of N-acylation on the immune adjuvanticity of analogs of the Quillaja saponins derivative GPI-0100. Vaccine. 2022;40:4169–4173. doi: 10.1016/j.vaccine.2022.05.084. PubMed DOI
Fuentes R., Aguinagalde L., Sacristan N., Fernandez-Tejada A. Design, synthesis, and initial immunological evaluation of glycoconjugates based on saponin adjuvants and the Tn antigen. Chem. Commun. 2021;57:11382–11385. doi: 10.1039/D1CC04459A. PubMed DOI PMC
Oda K., Matsuda H., Murakami T., Katayama S., Ohgitani T., Yoshikawa M. Relationship between adjuvant activity and amphipathic structure of soyasaponins. Vaccine. 2003;21:2145–2151. doi: 10.1016/S0264-410X(02)00739-9. PubMed DOI
Su X.-D., Jang H.-J., Wang C.-Y., Lee S.W., Rho M.-C., Kim Y.H., Yang S.Y. Anti-inflammatory potential of saponins from Aster tataricus via NF-κB/MAPK activation. J. Nat. Prod. 2019;82:1139–1148. doi: 10.1021/acs.jnatprod.8b00856. PubMed DOI
Bera M., Mukhopadhyay B. Chemical synthesis of the pentasaccharide related to the anti-inflammatory oleanane type saponins isolated from medicinal plant Aster tataricus L. f. Carbohydr. Res. 2022;516:108563. doi: 10.1016/j.carres.2022.108563. PubMed DOI
Li H., Cheng C., Shi S., Wu Y., Gao Y., Liu Z., Liu M., Li Z., Huo L., Pan X., et al. Identification, optimization, and biological evaluation of 3-O-β-chacotriosyl ursolic acid derivatives as novel SARS-CoV-2 entry inhibitors by targeting the prefusion state of spike protein. Eur. J. Med. Chem. 2022;238:114426. doi: 10.1016/j.ejmech.2022.114426. PubMed DOI PMC
Chen J., Cao D., Jiang S., Liu X., Pan W., Cui H., Yang W., Liu Z., Jin J., Zhao Z. Triterpenoid saponins from Ilex pubescens promote blood circulation in blood stasis syndrome by regulating sphingolipid metabolism and the PI3K/AKT/eNOS signaling pathway. Phytomedicine. 2022;104:154242. doi: 10.1016/j.phymed.2022.154242. PubMed DOI
Bailly C. Acankoreagenin and acankoreosides, a family of lupane triterpenoids with anti-inflammatory properties: An overview. Ann. N. Y. Acad. Sci. 2021;1502:14–27. doi: 10.1111/nyas.14623. PubMed DOI
Tsepaeva O.V., Nemtarev A.V., Kundina A.V., Grigoreva L.B., Mironov V.F. Synthesis of novel mannopyranosyl betulinic acid phosphoniohexyl ester. Mendeleev Commun. 2021;31:110–112. doi: 10.1016/j.mencom.2021.01.034. DOI
Ye Y., Zhang T., Yuan H., Li D., Lou H., Fan P. Mitochondria-targeted lupane triterpenoid derivatives and their selective apoptosis-inducing anticancer mechanisms. J. Med. Chem. 2017;60:6353–6363. doi: 10.1021/acs.jmedchem.7b00679. PubMed DOI
Gauthier C., Legault J., Lebrun M., Dufour P., Pichette A. Glycosidation of lupane-type triterpenoids as potent in vitro cytotoxic agents. Bioorg. Med. Chem. 2006;14:6713–6725. doi: 10.1016/j.bmc.2006.05.075. PubMed DOI
Smith P.F., Ogundele A., Forrest A., Wilton J., Salzwedel K., Doto J., Allaway G.P., Martin D.E. Phase I and II study of safety, virologic effect, and pharmacokinetics/pharmacodynamics of single-dose 3-O-(3’,3’-dimethylsuccinyl) betulinic acid (bevirimat) against human immunodeficiency virus infection. Antimicrob. Agents Chemother. 2007;51:3574–3581. doi: 10.1128/AAC.00152-07. PubMed DOI PMC
Margot N.A., Gibbs C.S., Miller M.D. Phenotypic susceptibility to bevirimat in isolates from HIV-1-infected patients without prior exposure to bevirimat. Antimicrob. Agents Chemother. 2010;54:2345–2353. doi: 10.1128/AAC.01784-09. PubMed DOI PMC
Özdemir Z., Yang M., Kim G., Bildziukevich U., Šaman D., Li X., Yoon J., Wimmer Z. Redox-responsive nanoparticles self-assembled from porphyrin-betulinic acid conjugates for chemo- and photodynamic therapy. Dyes Pigments. 2021;190:109307. doi: 10.1016/j.dyepig.2021.109307. DOI
Yang M., Özdemir Z., Kim H., Nah S., Andris E., Li X., Wimmer Z., Yoon J. Acid-responsive nanoporphyrin evolution for near-infrared fluorescence-guided photo-ablation of biofilm. Adv. Healthc. Mater. 2022;11:2200529. doi: 10.1002/adhm.202200529. PubMed DOI