Saponins of Selected Triterpenoids as Potential Therapeutic Agents: A Review

. 2023 Mar 02 ; 16 (3) : . [epub] 20230302

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36986485

Saponins represent important natural derivatives of plant triterpenoids that are secondary plant metabolites. Saponins, also named glycoconjugates, are available both as natural and synthetic products. This review is focused on saponins of the oleanane, ursane, and lupane types of triterpenoids that include several plant triterpenoids displaying various important pharmacological effects. Additional convenient structural modifications of naturally-occurring plant products often result in enhancing the pharmacological effects of the parent natural structures. This is an important objective for all semisynthetic modifications of the reviewed plant products, and it is included in this review paper as well. The period covered by this review (2019-2022) is relatively short, mainly due to the existence of previously published review papers in recent years.

Zobrazit více v PubMed

Gudoityte E., Arandarcikaite O., Mazeikiene I., Bendokas V., Liobikas J. Ursolic and Oleanolic Acids: Plant metabolites with neuroprotective potential. Int. J. Mol. Sci. 2021;22:4599. doi: 10.3390/ijms22094599. PubMed DOI PMC

De Souza Miranda R., da Silva Mascarenhas de Jesus B., da Silva Luiz S.R., Viana C.B., Malafaia C.R.A., de Souza Figueiredo F., Carvalho T.S.C., Silva M.L., Londero V.S., da Costa-Silva T.A., et al. Antiinflammatory activity of natural triterpenes—An overview from 2006 to 2021. Phytother. Res. 2022;36:1459–1506. doi: 10.1002/ptr.7359. PubMed DOI

Özdemir Z., Wimmer Z. Selected plant triterpenoids and their amide derivatives in cancer treatment: A review. Phytochemistry. 2022;203:113340. doi: 10.1016/j.phytochem.2022.113340. PubMed DOI

Lu Y., Van D., Deibert L., Bishop G., Balsevich J. Antiproliferative quillaic acid and gypsogenin saponins from Saponaria officinalis L. roots. Phytochemistry. 2015;113:108–120. doi: 10.1016/j.phytochem.2014.11.021. PubMed DOI

Arslan I. Quillaic acid–Containing saponin-based immunoadjuvants trigger early immune responses. Rev. Brasil. Farmacognosia. 2020;30:467–473. doi: 10.1007/s43450-020-00080-y. DOI

Mohammed E.A.H., Peng Y., Wang Z., Qiang X., Zhao Q. Synthesis, antiviral, and antibacterial activity of the glycyrrhizic acid and glycyrrhetinic acid derivatives. Russ. J. Bioorg. Chem. 2022;48:906–918. doi: 10.1134/S1068162022050132. PubMed DOI PMC

Tan D., Tseng H.H.L., Zhong Z., Wang S., Vong C.T., Wang Y. Glycyrrhizic acid and its derivatives: Promising candidates for the management of type 2 diabetes mellitus and its complications. Int. J. Mol. Sci. 2022;23:10988. doi: 10.3390/ijms231910988. PubMed DOI PMC

Pollier J., Goossens A. Oleanolic acid. Phytochemistry. 2012;77:10–15. doi: 10.1016/j.phytochem.2011.12.022. PubMed DOI

Wozniak L., Skapska S., Marszalek K. Ursolic acid–A pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules. 2015;20:20614–20641. doi: 10.3390/molecules201119721. PubMed DOI PMC

Muru K., Gauthier C. Glycosylation and protecting group strategies towards the synthesis of saponins and bacterial oligosaccharides: A personal account. Chem. Rec. 2021;21:2990–3004. doi: 10.1002/tcr.202000181. PubMed DOI

Li W., Yu B. Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chem. Soc. Rev. 2018;47:7954–7984. doi: 10.1039/C8CS00209F. PubMed DOI

Yang Y.-H., Dai S.-Y., Deng F.-H., Peng L.-H., Li C., Pei Y.-H. Recent advances in medicinal chemistry of oleanolic acid derivatives. Phytochemistry. 2022;203:113397. doi: 10.1016/j.phytochem.2022.113397. PubMed DOI

Antoniou C., Hull J. The anti-cancer effect of Olea europaea L. products: A review. Curr. Nutr. Rep. 2021;10:99–124. doi: 10.1007/s13668-021-00350-8. PubMed DOI PMC

Jäger S., Trojan H., Kopp T., Laszczyk M.N., Scheffler A. Pentacyclic triterpene distribution in various plants-Rich sources for a new group of multi-potent plant extracts. Molecules. 2009;14:2016–2031. doi: 10.3390/molecules14062016. PubMed DOI PMC

Shanmugam M.K., Dai X., Kumar A.P., Tan B.K.H., Sethi G., Bishayee A. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: Preclinical and clinical evidence. Cancer Lett. 2014;346:206–216. doi: 10.1016/j.canlet.2014.01.016. PubMed DOI PMC

Patocka J., Bhardwaj K., Klimova B., Nepovimova E., Wu Q., Landi M., Kuca K., Valis M., Wu W. Malus domestica: A review on nutritional features, chemical composition, traditional and medicinal value. Plants. 2020;9:1408. doi: 10.3390/plants9111408. PubMed DOI PMC

Raal A. Birch (Betula spp.) In: Awaad A.S., Singh V.K., Govil J.N., editors. Drug Plants II, Recent Progress in Medicinal Plants. Vol. 28. Studium Press/NHBS; Totnes, UK: 2010. pp. 121–142.

Cichewicz R.H., Kouzi S.A. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med. Res. Rev. 2004;24:90–114. doi: 10.1002/med.10053. PubMed DOI

Bag B.G., Majumdar R. Self-assembly of renewable nano-sized triterpenoids. Chem. Rec. 2017;17:841–873. doi: 10.1002/tcr.201600123. PubMed DOI

Bag B.G., Hasan S.N., Ghorai S., Panja S.K. First self-assembly of dihydroxy triterpenoid maslinic acid yielding vesicles. ACS Omega. 2019;4:7684–7690. doi: 10.1021/acsomega.8b03667. DOI

Bag B.G., Garai C., Ghorai S. Vesicular self-assembly of a natural ursane-type dihydroxy-triterpenoid corosolic acid. RSC Adv. 2019;9:15190–15195. doi: 10.1039/C9RA02801C. PubMed DOI PMC

Bag B.G., Barai A.C., Hasan S.N., Panja S.K., Ghorai S., Patra S. Terpenoids, nano-entities and molecular self-assembly. Pure Appl. Chem. 2020;92:567–577. doi: 10.1515/pac-2019-0812. DOI

Wimmerová M., Siglerová V., Šaman D., Šlouf M., Kaletová E., Wimmer Z. Improved enzyme-mediated synthesis and supramolecular self-assembly of naturally occurring conjugates of β-sitosterol. Steroids. 2017;117:38–43. doi: 10.1016/j.steroids.2016.09.009. PubMed DOI

Bildziukevich U., Kaletová E., Šaman D., Sievänen E., Kolehmainen E.T., Šlouf M., Wimmer Z. Spectral and microscopic study of self-assembly of novel cationic spermine amides of betulinic acid. Steroids. 2017;117:90–96. doi: 10.1016/j.steroids.2016.07.007. PubMed DOI

Bildziukevich U., Malík M., Özdemir Z., Rárová L., Janovská L., Šlouf M., Šaman D., Šarek J., Nonappa, Wimmer Z. Spermine amides of selected triterpenoid acids: Dynamic supramolecular system formation influences the cytotoxicity of the drugs. J. Mater. Chem. B. 2020;8:484–491. doi: 10.1039/C9TB01957J. PubMed DOI

Özdemir Z., Šaman D., Bednárová L., Pazderková M., Janovská L., Nonappa, Wimmer Z. Aging-induced structural transition of nanoscale oleanolic acid amphiphiles and selectivity against Gram-positive bacteria. ACS Appl. Nano Mater. 2022;5:3799–3810. doi: 10.1021/acsanm.1c04374. DOI

Bildziukevich U., Özdemir Z., Šaman D., Vlk M., Šlouf M., Rárová L., Wimmer Z. Novel cytotoxic 1,10-phenanthroline–triterpenoid amphiphiles with supramolecular characteristics capable of coordinating 64Cu(II) labels. Org. Biomol. Chem. 2022;20:8157–8163. doi: 10.1039/D2OB01172G. PubMed DOI

Özdemir Z., Nonappa, Wimmer Z. Triterpenoid building blocks for functional nanoscale assemblies: A review. ACS Appl. Nano Mater. 2022;5:16264–16277. doi: 10.1021/acsanm.2c03304. DOI

Ramos-Soriano J., Ghirardello M., Galan M.C. Recent advances in multivalent carbon nanoform-based glycoconjugates. Curr. Med. Chem. 2022;29:1232–1257. doi: 10.2174/0929867328666210714160954. PubMed DOI

Schijns V., Majhen D., van der Ley P., Thakur A., Summerfield A., Berisio R., Nativi C., Fernandez-Tejada A., Alvarez-Dominguez C., Gizurarson S., et al. Rational vaccine design in times of emerging diseases: The critical choices of immunological correlates of protection, vaccine antigen and immunomodulation. Pharmaceutics. 2021;13:501. doi: 10.3390/pharmaceutics13040501. PubMed DOI PMC

Yang W., Chen X., Li Y., Guo S., Wang Z., Yu X. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun. 2020;15:1–13. doi: 10.1177/1934578X20903555. DOI

Mioc M., Milan A., Malita D., Mioc A., Prodea A., Rakoviceanu R., Ghiulai R., Cristea A., Caruntu F., Soica C. Recent advances regarding the molecular mechanisms of triterpenic acids: A review (part I) Int. J. Mol. Sci. 2022;23:7740. doi: 10.3390/ijms23147740. PubMed DOI PMC

Hordyjewska A., Ostapiuk A., Horecka A., Kurzepa J. Betulin and betulinic acid: Triterpenoids derivatives with a powerful biological potential. Phytochem. Rev. 2019;18:929–951. doi: 10.1007/s11101-019-09623-1. DOI

Juang Y.-P., Liang P.-H. Biological and pharmacological effects of synthetic saponins. Molecules. 2020;25:4974. doi: 10.3390/molecules25214974. PubMed DOI PMC

Thu H.N.T., Huong D.N.H., Dieu T.N.T., Ngoc H.T.T., Van H.P., Ngoc A.H.T., Xuan H.N., Pham N.K., Manh C.N., Toan P.N.H. In vitro and in silico cytotoxic activities of triterpenoids from the leaves of Aralia dasyphylla Miq. and the assessment of their ADMET properties. J. Biomol. Struct. Dyn. 2022 doi: 10.1080/07391102.2022.2098822. PubMed DOI

Nguyen H.D. Two new triterpenoid saponins from the underground parts of Weigela x “Bristol Ruby”. J. Asian Nat. Prod. Res. 2022 doi: 10.1080/10286020.2022.2084586. PubMed DOI

Rezgui A., Mitaine-Offer A.C., Miyamoto T., Tanaka C., Delemasure S., Dutartre P., Lacaille-Dubois M.A. Oleanolic acid and hederagenin glycosides from Weigela stelzneri. Phytochemistry. 2016;123:40–47. doi: 10.1016/j.phytochem.2015.12.016. PubMed DOI

Lim H.J., Jie E.Y., Park I.S., Kim S.J., Ahn W.S., Jeong S.I., Kim S.W., Jung C.H. Anti-inflammatory effects of Weigela subsessilis callus extract via suppression of MAPK and NF-κB signaling. Plants. 2021;10:1635. doi: 10.3390/plants10081635. PubMed DOI PMC

Thuong P.T., Min B.-S., Jin W., Na M., Lee J., Seong R., Lee Y.-M., Song K., Seong Y., Lee H.-K., et al. Anti-complementary activity of ursane-type triterpenoids from Weigela subsessilis. Biol. Pharm. Bull. 2006;29:830–833. doi: 10.1248/bpb.29.830. PubMed DOI

Won Y.M., Seong Z.K., Kim J.L., Kim H.S., Song H.H., Kim D.Y., Kim J.H., Oh S.R., Cho H.W., Cho J.H., et al. Triterpene glycosides with stimulatory activity on melanogenesis from the aerial parts of Weigela subsessilis. Arch. Pharm. Res. 2015;38:1541–1551. doi: 10.1007/s12272-014-0524-0. PubMed DOI

Nguyen D.H., Mitaine-Offer A.C., Miyamoto T., Tanaka C., Bellaye P.S., Collin B., Chambin O., Lacaille-Dubois M.A. Phytochemical analysis of two Weigela florida cultivars, “Pink Poppet” and “Jean’s Gold”. Phytochem. Lett. 2020;37:85–89. doi: 10.1016/j.phytol.2020.04.009. DOI

Andriamisaina N., Mitaine-Offer A.C., Pruvot B., Chluba J., Miyamoto T., Tanaka C., Lacaille-Dubois M.A. Phytochemistry of Weigela x “kosteriana variegata” (Caprifoliaceae) Nat. Prod. Commun. 2018;13:403–406. doi: 10.1177/1934578X1801300406. DOI

Nguyen D.H., Mitaine-Offer A.C., Maroso S., Papini A.M., Paululat T., Bellaye P.S., Collin B., Chambin O., Lacaille-Dubois M.A. Cytotoxic glycosides from the roots of Weigela x “Bristol Ruby”. Fitoterapia. 2019;137:104242. doi: 10.1016/j.fitote.2019.104242. PubMed DOI

Champy-Tixier A.S., Mitaine-Offer A.C., Fernandez F.R., Miyamoto T., Tanaka C., Papini A.M., Lacaille-Dubois M.A. Oleanane-type glycosides from the roots of Weigela florida “rumba” and evaluation of their antibody recognition. Fitoterapia. 2018;128:198–203. doi: 10.1016/j.fitote.2018.04.017. PubMed DOI

Hobloss S., Bruguiere A., Champy-Tixier A.-S., Miyamoto T., Tanaka C., Dessertaine S., Sautour M., Lacaille-Dubois M.-A., Mitaine-Offer A.-C. Oleanane-type glycosides from Weigela x Styriaca and two cultivars of W. florida: “Minor black” and “Brigela”. Phytochemistry Lett. 2022;50:77–84. doi: 10.1016/j.phytol.2022.05.010. DOI

Aouane C., Kabouche A., Voutquenne-Nazabadioko L., Sayagh C., Martinez A., Magid A.A., Kabouche Z. Triterpenoid saponins from Anagallis monelli ssp. linifolia (L.) Maire and their chemotaxonomic significance. Phytochemistry. 2022;202:113305. PubMed

Zulkifli S.Z., Ab Ghani N., Rasol N.E., Salleh W.M.N.H.W., Ismail N.H. Lepiginosides A-D: Three new triterpenoid saponins and a new farnesyl glycoside from the stembarks of Lepisanthes rubiginosa (roxb.) Leenh. Nat. Prod. Res. 2022 doi: 10.1080/14786419.2022.2102629. PubMed DOI

Tran L.V., Thi N., Thi L., Van Tran C., Vo N.T.Q., Ho A.N., Tran T.T.P. Two new glycosides, farnesyl pentaglycoside and oleanane triglycoside from Lepisanthes rubiginosa, a mangrove plant collected from Thua Thien-Hue province, Vietnam. Nat. Prod. Res. 2022;36:1774–1780. doi: 10.1080/14786419.2020.1817010. PubMed DOI

Hasan M.M., Hossain A., Shamim A., Rahmam M.M. Phytochemical and pharmacological evaluation of ethanolic extract of Lepisanthes rubiginosa leaves. BMC Complement. Altern. Med. 2017;17:1–11. doi: 10.1186/s12906-017-2010-y. PubMed DOI PMC

Yang Y., Mouri A., Lu Q., Kunisawa K., Kubota H., Hasegawa M., Hirakawa M., Mori Y., Libo Z., Saito K., et al. Loureirin C and xanthoceraside prevent abnormal behaviors associated with downregulation of brain derived neurotrophic factor and AKT/mTOR/CREB signaling in the prefrontal cortex induced by chronic corticosterone exposure in mice. Neurochem. Res. 2022;47:2865–2879. doi: 10.1007/s11064-022-03694-x. PubMed DOI

Pereira G.C., Roversi K., Trevisan G., Burger M.E., Bochi G.V. Glucocorticoid and brain-derived neurotrophic factor relationship: A brief investigation into the model of depression by chronic administration of corticosterone. Behav. Pharmacol. 2020;31:407–412. doi: 10.1097/FBP.0000000000000547. PubMed DOI

Yau L.-F., Huang H., Tong T.-T., Bai L.-B., Zhu G.-Y., Hou Y., Bai G., Jiang Z.-H. Characterization of deglycosylated metabolites of platycosides reveals their biotransformation after oral administration. Food Chem. 2022;393:133383. doi: 10.1016/j.foodchem.2022.133383. PubMed DOI

Li Y., Sun Y., Ren G., Jiang D., Liu C. Functional characterization and substrate promiscuity analysis of UDP-glucose dehydrogenases from licorice (Glycyrrhiza uralensis) J. Mol. Struct. 2022;1265:133355. doi: 10.1016/j.molstruc.2022.133355. DOI

Qiao X., Wang Q., Wang S., Kuang Y., Li K., Song W., Ye M. A 42-markers pharmacokinetic study reveals interactions of berberine and glycyrrhizic acid in the anti-diabetic Chinese medicine formula Gegen-Qinlian decoction. Front. Pharmacol. 2018;9:622. doi: 10.3389/fphar.2018.00622. PubMed DOI PMC

Wang X., Zhang H., Chen L., Shan L., Fan G., Gao X. Liquorice, a unique guide drug of traditional Chinese medicine: A review of its role in drug interactions. J. Ethnopharmacol. 2013;150:781–790. doi: 10.1016/j.jep.2013.09.055. PubMed DOI

Kao T.C., Wu C.H., Yen G.C. Bioactivity and potential health benefits of licorice. J. Agric. Food Chem. 2014;62:542–553. doi: 10.1021/jf404939f. PubMed DOI

Huo H.Z., Wang B., Liang Y.K., Bao Y.Y., Gu Y. Hepatoprotective and Antioxidant effects of licorice extract against Ccl (4)-induced oxidative damage in rats. Int. J. Mol. Sci. 2011;12:6529–6543. doi: 10.3390/ijms12106529. PubMed DOI PMC

Simayi Z., Rozi P., Yang X., Ababaikeri G., Maimaitituoheti W., Bao X., Yadikar N. Isolation, structural characterization, biological activity, and application of Glycyrrhiza polysaccharides: Systematic review. Int. J. Biol. Macromol. 2021;183:387–398. doi: 10.1016/j.ijbiomac.2021.04.099. PubMed DOI

Wang L., Yang R., Yuan B., Liu Y., Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B. 2015;5:310–315. doi: 10.1016/j.apsb.2015.05.005. PubMed DOI PMC

Wang Z.F., Liu J., Yang Y.A., Zhu H.L. A review: The anti-inflammatory, anticancer and antibacterial properties of four kinds of licorice flavonoids isolated from licorice. Curr. Med. Chem. 2020;27:1997–2011. doi: 10.2174/0929867325666181001104550. PubMed DOI

Sharifi-Rad J., Quispe C., Herrera-Bravo J., Belen L.H., Kaur R., Kregiel D., Suleria H.A.R. Glycyrrhiza genus: Enlightening phytochemical components for pharmacological and health-promoting abilities. Oxid. Med. Cell. Longev. 2021:7571132. doi: 10.1155/2021/7571132. PubMed DOI PMC

Kim S.H., Hong J.H., Yang W.K., Geum J.H., Kim H.R., Choi S.Y., Lee Y.C. Herbal combinational medication of Glycyrrhiza glabra, Agastache rugosa containing glycyrrhizic acid, tilianin inhibits neutrophilic lung inflammation by affecting Cxcl2, interleukin-17/Stat3 signal pathways in a murine model of COPD. Nutrients. 2020;12:926. doi: 10.3390/nu12040926. PubMed DOI PMC

Rani K., Devi N., Saharan V., Kharb P. Glycyrrhiza glabra: An insight to nanomedicine. J. Nanosci. Nanotechnol. 2021;21:3367–3378. doi: 10.1166/jnn.2021.19007. PubMed DOI

Zhang Q.H., Huang H.Z., Qiu M., Wu Z.F., Xin Z.C., Cai X.F., Han L. Traditional uses, pharmacological effects, and molecular mechanisms of licorice in potential therapy of Covid-19. Front. Pharmacol. 2021;12:719758. doi: 10.3389/fphar.2021.719758. PubMed DOI PMC

Yang R., Yuan B.C., Ma Y.S., Zhou S., Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm. Biol. 2017;55:15–18. doi: 10.1080/13880209.2016.1225775. PubMed DOI PMC

Song W., Si L., Ji S., Wang H., Fang X.M., Yu L.Y., Li R.Y., Liang L.N., Zhou D., Ye M. Uralsaponins M-Y, Antiviral triterpenoid saponins from the roots of Glycyrrhiza uralensis. J. Nat. Prod. 2014;77:1632–1643. doi: 10.1021/np500253m. PubMed DOI

Marciani D.J. Effects of N-acylation on the immune adjuvanticity of analogs of the Quillaja saponins derivative GPI-0100. Vaccine. 2022;40:4169–4173. doi: 10.1016/j.vaccine.2022.05.084. PubMed DOI

Fuentes R., Aguinagalde L., Sacristan N., Fernandez-Tejada A. Design, synthesis, and initial immunological evaluation of glycoconjugates based on saponin adjuvants and the Tn antigen. Chem. Commun. 2021;57:11382–11385. doi: 10.1039/D1CC04459A. PubMed DOI PMC

Oda K., Matsuda H., Murakami T., Katayama S., Ohgitani T., Yoshikawa M. Relationship between adjuvant activity and amphipathic structure of soyasaponins. Vaccine. 2003;21:2145–2151. doi: 10.1016/S0264-410X(02)00739-9. PubMed DOI

Su X.-D., Jang H.-J., Wang C.-Y., Lee S.W., Rho M.-C., Kim Y.H., Yang S.Y. Anti-inflammatory potential of saponins from Aster tataricus via NF-κB/MAPK activation. J. Nat. Prod. 2019;82:1139–1148. doi: 10.1021/acs.jnatprod.8b00856. PubMed DOI

Bera M., Mukhopadhyay B. Chemical synthesis of the pentasaccharide related to the anti-inflammatory oleanane type saponins isolated from medicinal plant Aster tataricus L. f. Carbohydr. Res. 2022;516:108563. doi: 10.1016/j.carres.2022.108563. PubMed DOI

Li H., Cheng C., Shi S., Wu Y., Gao Y., Liu Z., Liu M., Li Z., Huo L., Pan X., et al. Identification, optimization, and biological evaluation of 3-O-β-chacotriosyl ursolic acid derivatives as novel SARS-CoV-2 entry inhibitors by targeting the prefusion state of spike protein. Eur. J. Med. Chem. 2022;238:114426. doi: 10.1016/j.ejmech.2022.114426. PubMed DOI PMC

Chen J., Cao D., Jiang S., Liu X., Pan W., Cui H., Yang W., Liu Z., Jin J., Zhao Z. Triterpenoid saponins from Ilex pubescens promote blood circulation in blood stasis syndrome by regulating sphingolipid metabolism and the PI3K/AKT/eNOS signaling pathway. Phytomedicine. 2022;104:154242. doi: 10.1016/j.phymed.2022.154242. PubMed DOI

Bailly C. Acankoreagenin and acankoreosides, a family of lupane triterpenoids with anti-inflammatory properties: An overview. Ann. N. Y. Acad. Sci. 2021;1502:14–27. doi: 10.1111/nyas.14623. PubMed DOI

Tsepaeva O.V., Nemtarev A.V., Kundina A.V., Grigoreva L.B., Mironov V.F. Synthesis of novel mannopyranosyl betulinic acid phosphoniohexyl ester. Mendeleev Commun. 2021;31:110–112. doi: 10.1016/j.mencom.2021.01.034. DOI

Ye Y., Zhang T., Yuan H., Li D., Lou H., Fan P. Mitochondria-targeted lupane triterpenoid derivatives and their selective apoptosis-inducing anticancer mechanisms. J. Med. Chem. 2017;60:6353–6363. doi: 10.1021/acs.jmedchem.7b00679. PubMed DOI

Gauthier C., Legault J., Lebrun M., Dufour P., Pichette A. Glycosidation of lupane-type triterpenoids as potent in vitro cytotoxic agents. Bioorg. Med. Chem. 2006;14:6713–6725. doi: 10.1016/j.bmc.2006.05.075. PubMed DOI

Smith P.F., Ogundele A., Forrest A., Wilton J., Salzwedel K., Doto J., Allaway G.P., Martin D.E. Phase I and II study of safety, virologic effect, and pharmacokinetics/pharmacodynamics of single-dose 3-O-(3’,3’-dimethylsuccinyl) betulinic acid (bevirimat) against human immunodeficiency virus infection. Antimicrob. Agents Chemother. 2007;51:3574–3581. doi: 10.1128/AAC.00152-07. PubMed DOI PMC

Margot N.A., Gibbs C.S., Miller M.D. Phenotypic susceptibility to bevirimat in isolates from HIV-1-infected patients without prior exposure to bevirimat. Antimicrob. Agents Chemother. 2010;54:2345–2353. doi: 10.1128/AAC.01784-09. PubMed DOI PMC

Özdemir Z., Yang M., Kim G., Bildziukevich U., Šaman D., Li X., Yoon J., Wimmer Z. Redox-responsive nanoparticles self-assembled from porphyrin-betulinic acid conjugates for chemo- and photodynamic therapy. Dyes Pigments. 2021;190:109307. doi: 10.1016/j.dyepig.2021.109307. DOI

Yang M., Özdemir Z., Kim H., Nah S., Andris E., Li X., Wimmer Z., Yoon J. Acid-responsive nanoporphyrin evolution for near-infrared fluorescence-guided photo-ablation of biofilm. Adv. Healthc. Mater. 2022;11:2200529. doi: 10.1002/adhm.202200529. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...