Palladium and Platinum Complexes of the Antimetabolite Fludarabine with Vastly Enhanced Selectivity for Tumour over Non-Malignant Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Scho 402/12-2
Deutsche Forschungsgemeinschaft
PubMed
37446835
PubMed Central
PMC10343763
DOI
10.3390/molecules28135173
PII: molecules28135173
Knihovny.cz E-zdroje
- Klíčová slova
- CLL, anticancer drugs, fludarabine, lymphoma, metal–drug synergy, platinum complexes,
- MeSH
- antimetabolity terapeutické užití MeSH
- chronická lymfatická leukemie * farmakoterapie MeSH
- imunosupresiva terapeutické užití MeSH
- lidé MeSH
- palladium chemie MeSH
- platina chemie MeSH
- protinádorové látky * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antimetabolity MeSH
- fludarabine MeSH Prohlížeč
- imunosupresiva MeSH
- palladium MeSH
- platina MeSH
- protinádorové látky * MeSH
The purine derivative fludarabine is part of frontline therapy for chronic lymphocytic leukaemia (CLL). It has shown positive effects on solid tumours such as melanoma, breast, and colon carcinoma in clinical phase I studies. As the treatment of CLL cells with combinations of fludarabine and metal complexes of antitumoural natural products, e.g., illudin M ferrocene, has led to synergistically enhanced apoptosis, in this research study different complexes of fludarabine itself. Four complexes bearing a trans-[Br(PPh3)2]Pt/Pd fragment attached to atom C-8 via formal η1-sigma or η2-carbene bonds were synthesised in two or three steps without protecting polar groups on the arabinose or adenine. The platinum complexes were more cytotoxic than their palladium analogues, with low single-digit micromolar IC50 values against cells of various solid tumour entities, including cisplatin-resistant ones and certain B-cell lymphoma and CLL, presumably due to the ten-fold higher cellular uptake of the platinum complexes. However, the palladium complexes interacted more readily with isolated Calf thymus DNA. Interestingly, the platinum complexes showed vastly greater selectivity for cancer over non-malignant cells when compared with fludarabine.
Zobrazit více v PubMed
Ferlay J., Colombet M., Soerjomataram I., Parkin D.M., Pineros M., Znaor A., Bray F. Cancer statistics for the year 2020: An overview. Int. J. Cancer. 2021;149:778–789. doi: 10.1002/ijc.33588. PubMed DOI
El-Zine M.A.Y., Alhadi A.M., Ishak A.A., Al-Shamahy H.A. Prevalence of different types of leukemia and associated factors among children with leukemia in children’s cancer units at Al-Kuwait Hospital, Sana’a City: A cross-sectional study. Glob. J. Ped. Neonatol. Car. 2021;3:000569. doi: 10.33552/GJPNC.2021.03.000569. DOI
Burger J.A. Treatment of chronic lymphocytic leukemia. N. Engl. J. Med. 2020;383:460–473. doi: 10.1056/NEJMra1908213. PubMed DOI
Eichhorst B., Robak T., Montserrat E., Ghia P., Niemann C.U., Kater A.P., Gregor M., Cymbalista F., Buske C., on behalf of the ESMO Guidelines Committee et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021;32:23–33. doi: 10.1016/j.annonc.2020.09.019. PubMed DOI
Huang C., Tu Y., Freter C.E. Fludarabine-resistance associates with ceramide metabolism and leukemia stem cell development in chronic lymphocytic leukemia. Oncotarget. 2018;9:33124–33137. doi: 10.18632/oncotarget.26043. PubMed DOI PMC
Hallek M., Fischer K., Fingerle-Rowson G., Fink A.M., Busch R., Mayer J., Hensel M., Hopfinger G., Hess G., Von Grünhagen U., et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukemia: A randomised, open-label, phase 3 trial. Lancet. 2010;376:1164–1174. doi: 10.1016/S0140-6736(10)61381-5. PubMed DOI
Hanauske A.-R., von Hoff D.D. Clinical development of fludarabine. In: Cheson B.D., Keating M.J., Plunkett W., editors. Nucleoside Analogs in Cancer Therapy. CRC Press; Boca Raton, FL, USA: 2021.
Gandhi V., Plunkett W. Cellular and clinical pharmacology of fludarabine. Clin. Pharmacokinet. 2002;41:93–103. doi: 10.2165/00003088-200241020-00002. PubMed DOI
Huang P., Chubb S., Plunkett W. Termination of DNA synthesis by 9-beta-d-arabinosyl-2-fluoroadenine. A mechanism for cytotoxicity. J. Biol. Chem. 1990;265:16617–16625. doi: 10.1016/S0021-9258(17)46267-3. PubMed DOI
Plunkett W., Huang P., Gandhi V. Metabolism and action of fludarabine phosphate. Semin. Oncol. 1990;17:3–17. PubMed
Huang P., Sandoval A., Van Den Neste E., Keating M.J., Plunkett W. Inhibition of RNA transcription: A biochemical mechanism of action against chrocic lymphocytic leukemia cells by fludarabine. Leukemia. 2000;14:1405–1413. doi: 10.1038/sj.leu.2401845. PubMed DOI
Christopherson R.I., Mactier S., Almazi J.G., Kohnke P.L., Best O.G., Mulligan S.P. Mechanism of action of fludarabine nucleoside against human Raji lymphoma cells. Nucleos. Nucleot Nucl. 2014;33:375–383. doi: 10.1080/15257770.2013.863334. PubMed DOI
Takagi K., Kawai Y., Yamauchi T., Iwasaki H., Ueda T. Synergistic effects of combination with fludarabine and carboplatin depend on fludarabine-mediated inhibition of enhanced nucleotide excision repair in leukemia. Int. J. Hematol. 2011;94:378–389. doi: 10.1007/s12185-011-0930-8. PubMed DOI
Zecevic A., Sampath D., Ewald B., Chen R., Wierda W., Plunkett W. Killing of chronic lymphocytic leukemia by the combination of fludarabine and oxaliplatin is dependent on the activity of XPF endonuclease. Clin. Cancer Res. 2011;17:4731–4741. doi: 10.1158/1078-0432.CCR-10-2561. PubMed DOI PMC
Moufarij M.A., Sampath D., Keating M.J., Plunkett W. Fludarabine increases oxaliplatin cytotoxicity in normal and chronic lymphocytic leukemia lymphocytes by suppressing interstrand DNA crosslink removal. Blood. 2006;108:4187–4193. doi: 10.1182/blood-2006-05-023259. PubMed DOI PMC
Lohmann G., Vasyutina E., Bloehdorn J., Reinart N., Schneider J., Babu V., Knittel G., Mayer P., Prinz C., Biersack B., et al. Targeting transcription-coupled nucleotide excision repair overcomes resistance in chronic lymphocytic leukemia. Leukemia. 2017;31:1177–1186. doi: 10.1038/leu.2016.294. PubMed DOI
Gianferrara T., Bratsos I., Alessio E. A categorization of metal anticancer compounds based on their mode of action. Dalton Trans. 2009;37:7588–7598. doi: 10.1039/b905798f. PubMed DOI
Bär S.I., Gold M., Schleser S.W., Rehm T., Bär A., Köhler L., Carnell L.R., Biersack B., Schobert R. Guided antitumoral drugs: (imidazol-2-ylidene)(L)gold(I) complexes seeking cellular targets controlled by the nature of ligand L. Chem. Eur. J. 2021;27:5003–5010. doi: 10.1002/chem.202005451. PubMed DOI PMC
Nguyen A., Vessieres A., Hillard E.A., Top S., Pigeon P., Jaouen G. Ferrocifens and ferrocifenols as new potential weapons against breast cancer. Chimia. 2007;61:716–724. doi: 10.2533/chimia.2007.716. DOI
Knauer S., Biersack B., Zoldakova M., Effenberger K., Milius W., Schobert R. Melanoma specific ferrocene esters of the fungal cytotoxin illudin M. Anticancer Drugs. 2009;20:676–681. doi: 10.1097/CAD.0b013e32832e056a. PubMed DOI
Kober L., Schleser S.W., Bär S.I., Schobert R. Revisiting the anticancer properties of phosphane(9-ribosylpurine-6-thiolato)gold(I) complexes and their 9H-purine precursors. J. Biol. Inorg. Chem. 2022;27:731–745. doi: 10.1007/s00775-022-01968-x. PubMed DOI PMC
Leitão M.I.P.S., Herrera F., Petronilho A. N-heterocyclic carbenes derived from guanosine: Synthesis and evidences of their antiproliferative activity. ACS Omega. 2018;3:15653–15656. doi: 10.1021/acsomega.8b02387. PubMed DOI PMC
Kampert F., Brackemeyer D., Tan T.T.Y., Hahn F.E. Selective C8-metalation of purine nucleosides via oxidative addition. Organometallics. 2018;37:4181–4185. doi: 10.1021/acs.organomet.8b00685. DOI
Goossen L.J., Koley D., Hermann H.L., Thiel W. Mechanistic pathways for oxidative addition of aryl halides to palladium(0) complexes: A DFT study. Organometallics. 2005;24:2398–2410. doi: 10.1021/om0500220. DOI
Casado A.L., Espinet P. A novel reversible aryl exchange involving two organometallics: mechanism of the gold(I)-catalyzed isomerization of trans-[PdR2L2] complexes (R = aryl, L = SC4H8) Organometallics. 1998;17:3677–3683. doi: 10.1021/om980283s. DOI
Leitão M.I.P.S., Francescato G., Gomes C.S.B., Petronilho A. Synthesis of platinum(II) N-heterocyclic carbenes based on adenosine. Molecules. 2021;26:5384. doi: 10.3390/molecules26175384. PubMed DOI PMC
Kucukdumlu A., Tuncbilek M., Guven E.B., Atalay R.C. Design, synthesis and in vitro cytotoxic activity of new 6,9-disubstituted purine analogues. Acta Chim. Slov. 2020;67:70–82. doi: 10.17344/acsi.2019.5196. PubMed DOI
Kapdi A.R., Fairlamb I.J.S. Anti-cancer palladium complexes: A focus on PdX2L2, palladacycles and related complexes. Chem. Soc. Rev. 2014;43:4751–4777. doi: 10.1039/C4CS00063C. PubMed DOI
Heinrich A.-K., Lucas H., Schindler L., Chytil P., Etrych T., Mäder K., Mueller T. Improved tumor-specific drug accumulation by polymer therapeutics with pH-sensitive drug release overcomes chemotherapy resistance. Mol. Cancer Ther. 2016;15:998–1007. doi: 10.1158/1535-7163.MCT-15-0824. PubMed DOI