New Inhibitors of Bcr-Abl Based on 2,6,9-Trisubstituted Purine Scaffold Elicit Cytotoxicity in Chronic Myeloid Leukemia-Derived Cell Lines Sensitive and Resistant to TKIs

. 2024 May 11 ; 16 (5) : . [epub] 20240511

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38794311

Grantová podpora
1231199 FONDECYT
23-05474S Czech Science Foundation
IGA_PrF_2024_005 Palacký University in Olomuc
LX22NPO5102 The European Union - Next Generation EU

Odkazy

PubMed 38794311
PubMed Central PMC11125181
DOI 10.3390/pharmaceutics16050649
PII: pharmaceutics16050649
Knihovny.cz E-zdroje

Bcr-Abl is an oncoprotein with aberrant tyrosine kinase activity involved in the progression of chronic myeloid leukemia (CML) and has been targeted by inhibitors such as imatinib and nilotinib. However, despite their efficacy in the treatment of CML, a mechanism of resistance to these drugs associated with mutations in the kinase region has emerged. Therefore, in this work, we report the synthesis of 14 new 2,6,9-trisubstituted purines designed from our previous Bcr-Abl inhibitors. Here, we highlight 11b, which showed higher potency against Bcr-Abl (IC50 = 0.015 μM) than imatinib and nilotinib and exerted the most potent antiproliferative properties on three CML cells harboring the Bcr-Abl rearrangement (GI50 = 0.7-1.3 μM). In addition, these purines were able to inhibit the growth of KCL22 cell lines expressing Bcr-AblT315I, Bcr-AblE255K, and Bcr-AblY253H point mutants in micromolar concentrations. Imatinib and nilotinib were ineffective in inhibiting the growth of KCL22 cells expressing Bcr-AblT315I (GI50 > 20 μM) compared to 11b-f (GI50 = 6.4-11.5 μM). Molecular docking studies explained the structure-activity relationship of these purines in Bcr-AblWT and Bcr-AblT315I. Finally, cell cycle cytometry assays and immunodetection showed that 11b arrested the cells in G1 phase, and that 11b downregulated the protein levels downstream of Bcr-Abl in these cells.

Zobrazit více v PubMed

Westerweel P.E., te Boekhorst P.A.W., Levin M.-D., Cornelissen J.J. New Approaches and Treatment Combinations for the Management of Chronic Myeloid Leukemia. Front. Oncol. 2019;9:00665. doi: 10.3389/fonc.2019.00665. PubMed DOI PMC

An X., Tiwari A.K., Sun Y., Ding P.-R., Ashby C.R., Chen Z.-S. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: A review. Leuk. Res. 2010;34:1255–1268. doi: 10.1016/j.leukres.2010.04.016. PubMed DOI

Sánchez R., Dorado S., Ruíz-Heredia Y., Martín-Muñoz A., Rosa-Rosa J.M., Ribera J., García O., Jimenez-Ubieto A., Carreño-Tarragona G., Linares M., et al. Detection of kinase domain mutations in BCR::ABL1 leukemia by ultra-deep sequencing of genomic DNA. Sci. Rep. 2022;12:13057. doi: 10.1038/s41598-022-17271-3. PubMed DOI PMC

O’Hare T., Deininger M.W.N., Eide C.A., Clackson T., Druker B.J. Targeting the BCR-ABL Signaling Pathway in Therapy-Resistant Philadelphia Chromosome-Positive Leukemia. Clin. Cancer Res. 2011;17:212–221. doi: 10.1158/1078-0432.Ccr-09-3314. PubMed DOI

Rossari F., Minutolo F., Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: From chemical development to clinical efficacy. J. Hematol. Oncol. 2018;11:84. doi: 10.1186/s13045-018-0624-2. PubMed DOI PMC

Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol. Res. 2023;187:106552. doi: 10.1016/j.phrs.2022.106552. PubMed DOI

Ren R. Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer. 2005;5:172–183. doi: 10.1038/nrc1567. PubMed DOI

Alves R., Gonçalves A.C., Rutella S., Almeida A.M., De Las Rivas J., Trougakos I.P., Sarmento Ribeiro A.B. Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia—From Molecular Mechanisms to Clinical Relevance. Cancers. 2021;13:4820. doi: 10.3390/cancers13194820. PubMed DOI PMC

Liu J., Zhang Y., Huang H., Lei X., Tang G., Cao X., Peng J. Recent advances in Bcr-Abl tyrosine kinase inhibitors for overriding T315I mutation. Chem. Biol. Drug Des. 2021;97:649–664. doi: 10.1111/cbdd.13801. PubMed DOI

Desogus A., Schenone S., Brullo C., Tintori C., Musumeci F. Bcr-Abl tyrosine kinase inhibitors: A patent review. Expert Opin. Ther. Pat. 2015;25:397–412. doi: 10.1517/13543776.2015.1012155. PubMed DOI

Azam M., Nardi V., Shakespeare W.C., Metcalf C.A., 3rd, Bohacek R.S., Wang Y., Sundaramoorthi R., Sliz P., Veach D.R., Bornmann W.G., et al. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Proc. Natl. Acad. Sci. USA. 2006;103:9244–9249. doi: 10.1073/pnas.0600001103. PubMed DOI PMC

Bertrand J., Dostálová H., Krystof V., Jorda R., Castro A., Mella J., Espinosa-Bustos C., María Zarate A., Salas C.O. New 2,6,9-trisubstituted purine derivatives as Bcr-Abl and Btk inhibitors and as promising agents against leukemia. Bioorganic Chem. 2020;94:103361. doi: 10.1016/j.bioorg.2019.103361. PubMed DOI

Bertrand J., Dostálová H., Kryštof V., Jorda R., Delgado T., Castro-Alvarez A., Mella J., Cabezas D., Faúndez M., Espinosa-Bustos C., et al. Design, Synthesis, In Silico Studies and Inhibitory Activity towards Bcr-Abl, BTK and FLT3-ITD of New 2,6,9-Trisubstituted Purine Derivatives as Potential Agents for the Treatment of Leukaemia. Pharmaceutics. 2022;14:1294. doi: 10.3390/pharmaceutics14061294. PubMed DOI PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Friesner R.A., Banks J.L., Murphy R.B., Halgren T.A., Klicic J.J., Mainz D.T., Repasky M.P., Knoll E.H., Shelley M., Perry J.K., et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. PubMed DOI

Friesner R.A., Murphy R.B., Repasky M.P., Frye L.L., Greenwood J.R., Halgren T.A., Sanschagrin P.C., Mainz D.T. Extra Precision Glide:  Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein–Ligand Complexes. J. Med. Chem. 2006;49:6177–6196. doi: 10.1021/jm051256o. PubMed DOI

Genheden S., Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015;10:449–461. doi: 10.1517/17460441.2015.1032936. PubMed DOI PMC

Curik N., Polivkova V., Burda P., Koblihova J., Laznicka A., Kalina T., Kanderova V., Brezinova J., Ransdorfova S., Karasova D., et al. Somatic Mutations in Oncogenes Are in Chronic Myeloid Leukemia Acquired De Novo via Deregulated Base-Excision Repair and Alternative Non-Homologous End Joining. Front Oncol. 2021;11:744373. doi: 10.3389/fonc.2021.744373. PubMed DOI PMC

Calderon-Arancibia J., Espinosa-Bustos C., Canete-Molina A., Tapia R.A., Faundez M., Torres M.J., Aguirre A., Paulino M., Salas C.O. Synthesis and pharmacophore modelling of 2,6,9-trisubstituted purine derivatives and their potential role as apoptosis-inducing agents in cancer cell lines. Molecules. 2015;20:6808–6826. doi: 10.3390/molecules20046808. PubMed DOI PMC

Meng Y., Gao C., Clawson D.K., Atwell S., Russell M., Vieth M., Roux B. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models. J. Chem. Theory Comput. 2018;14:2721–2732. doi: 10.1021/acs.jctc.7b01170. PubMed DOI PMC

Weisberg E., Manley P., Mestan J., Cowan-Jacob S., Ray A., Griffin J.D. AMN107 (nilotinib): A novel and selective inhibitor of BCR-ABL. Br. J. Cancer. 2006;94:1765–1769. doi: 10.1038/sj.bjc.6603170. PubMed DOI PMC

Willis S.G., Lange T., Demehri S., Otto S., Crossman L., Niederwieser D., Stoffregen E.P., McWeeney S., Kovacs I., Park B., et al. High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: Correlation with clonal cytogenetic evolution but not response to therapy. Blood. 2005;106:2128–2137. doi: 10.1182/blood-2005-03-1036. PubMed DOI

Pemovska T., Johnson E., Kontro M., Repasky G.A., Chen J., Wells P., Cronin C.N., McTigue M., Kallioniemi O., Porkka K., et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature. 2015;519:102–105. doi: 10.1038/nature14119. PubMed DOI

Meanwell N.A. Improving Drug Candidates by Design: A Focus on Physicochemical Properties As a Means of Improving Compound Disposition and Safety. Chem. Res. Toxicol. 2011;24:1420–1456. doi: 10.1021/tx200211v. PubMed DOI

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. The article was originally published in Adv. Drug Deliv. Rev. 1997, 23, 3–25.1. PubMed DOI

Veber D.F., Johnson S.R., Cheng H.-Y., Smith B.R., Ward K.W., Kopple K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...