New Inhibitors of Bcr-Abl Based on 2,6,9-Trisubstituted Purine Scaffold Elicit Cytotoxicity in Chronic Myeloid Leukemia-Derived Cell Lines Sensitive and Resistant to TKIs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1231199
FONDECYT
23-05474S
Czech Science Foundation
IGA_PrF_2024_005
Palacký University in Olomuc
LX22NPO5102
The European Union - Next Generation EU
PubMed
38794311
PubMed Central
PMC11125181
DOI
10.3390/pharmaceutics16050649
PII: pharmaceutics16050649
Knihovny.cz E-zdroje
- Klíčová slova
- Bcr-Abl inhibitors, TKI-resistant cells, chronic myeloid leukemia, in silico studies, purine derivatives,
- Publikační typ
- časopisecké články MeSH
Bcr-Abl is an oncoprotein with aberrant tyrosine kinase activity involved in the progression of chronic myeloid leukemia (CML) and has been targeted by inhibitors such as imatinib and nilotinib. However, despite their efficacy in the treatment of CML, a mechanism of resistance to these drugs associated with mutations in the kinase region has emerged. Therefore, in this work, we report the synthesis of 14 new 2,6,9-trisubstituted purines designed from our previous Bcr-Abl inhibitors. Here, we highlight 11b, which showed higher potency against Bcr-Abl (IC50 = 0.015 μM) than imatinib and nilotinib and exerted the most potent antiproliferative properties on three CML cells harboring the Bcr-Abl rearrangement (GI50 = 0.7-1.3 μM). In addition, these purines were able to inhibit the growth of KCL22 cell lines expressing Bcr-AblT315I, Bcr-AblE255K, and Bcr-AblY253H point mutants in micromolar concentrations. Imatinib and nilotinib were ineffective in inhibiting the growth of KCL22 cells expressing Bcr-AblT315I (GI50 > 20 μM) compared to 11b-f (GI50 = 6.4-11.5 μM). Molecular docking studies explained the structure-activity relationship of these purines in Bcr-AblWT and Bcr-AblT315I. Finally, cell cycle cytometry assays and immunodetection showed that 11b arrested the cells in G1 phase, and that 11b downregulated the protein levels downstream of Bcr-Abl in these cells.
Zobrazit více v PubMed
Westerweel P.E., te Boekhorst P.A.W., Levin M.-D., Cornelissen J.J. New Approaches and Treatment Combinations for the Management of Chronic Myeloid Leukemia. Front. Oncol. 2019;9:00665. doi: 10.3389/fonc.2019.00665. PubMed DOI PMC
An X., Tiwari A.K., Sun Y., Ding P.-R., Ashby C.R., Chen Z.-S. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: A review. Leuk. Res. 2010;34:1255–1268. doi: 10.1016/j.leukres.2010.04.016. PubMed DOI
Sánchez R., Dorado S., Ruíz-Heredia Y., Martín-Muñoz A., Rosa-Rosa J.M., Ribera J., García O., Jimenez-Ubieto A., Carreño-Tarragona G., Linares M., et al. Detection of kinase domain mutations in BCR::ABL1 leukemia by ultra-deep sequencing of genomic DNA. Sci. Rep. 2022;12:13057. doi: 10.1038/s41598-022-17271-3. PubMed DOI PMC
O’Hare T., Deininger M.W.N., Eide C.A., Clackson T., Druker B.J. Targeting the BCR-ABL Signaling Pathway in Therapy-Resistant Philadelphia Chromosome-Positive Leukemia. Clin. Cancer Res. 2011;17:212–221. doi: 10.1158/1078-0432.Ccr-09-3314. PubMed DOI
Rossari F., Minutolo F., Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: From chemical development to clinical efficacy. J. Hematol. Oncol. 2018;11:84. doi: 10.1186/s13045-018-0624-2. PubMed DOI PMC
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol. Res. 2023;187:106552. doi: 10.1016/j.phrs.2022.106552. PubMed DOI
Ren R. Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer. 2005;5:172–183. doi: 10.1038/nrc1567. PubMed DOI
Alves R., Gonçalves A.C., Rutella S., Almeida A.M., De Las Rivas J., Trougakos I.P., Sarmento Ribeiro A.B. Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia—From Molecular Mechanisms to Clinical Relevance. Cancers. 2021;13:4820. doi: 10.3390/cancers13194820. PubMed DOI PMC
Liu J., Zhang Y., Huang H., Lei X., Tang G., Cao X., Peng J. Recent advances in Bcr-Abl tyrosine kinase inhibitors for overriding T315I mutation. Chem. Biol. Drug Des. 2021;97:649–664. doi: 10.1111/cbdd.13801. PubMed DOI
Desogus A., Schenone S., Brullo C., Tintori C., Musumeci F. Bcr-Abl tyrosine kinase inhibitors: A patent review. Expert Opin. Ther. Pat. 2015;25:397–412. doi: 10.1517/13543776.2015.1012155. PubMed DOI
Azam M., Nardi V., Shakespeare W.C., Metcalf C.A., 3rd, Bohacek R.S., Wang Y., Sundaramoorthi R., Sliz P., Veach D.R., Bornmann W.G., et al. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Proc. Natl. Acad. Sci. USA. 2006;103:9244–9249. doi: 10.1073/pnas.0600001103. PubMed DOI PMC
Bertrand J., Dostálová H., Krystof V., Jorda R., Castro A., Mella J., Espinosa-Bustos C., María Zarate A., Salas C.O. New 2,6,9-trisubstituted purine derivatives as Bcr-Abl and Btk inhibitors and as promising agents against leukemia. Bioorganic Chem. 2020;94:103361. doi: 10.1016/j.bioorg.2019.103361. PubMed DOI
Bertrand J., Dostálová H., Kryštof V., Jorda R., Delgado T., Castro-Alvarez A., Mella J., Cabezas D., Faúndez M., Espinosa-Bustos C., et al. Design, Synthesis, In Silico Studies and Inhibitory Activity towards Bcr-Abl, BTK and FLT3-ITD of New 2,6,9-Trisubstituted Purine Derivatives as Potential Agents for the Treatment of Leukaemia. Pharmaceutics. 2022;14:1294. doi: 10.3390/pharmaceutics14061294. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Friesner R.A., Banks J.L., Murphy R.B., Halgren T.A., Klicic J.J., Mainz D.T., Repasky M.P., Knoll E.H., Shelley M., Perry J.K., et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. PubMed DOI
Friesner R.A., Murphy R.B., Repasky M.P., Frye L.L., Greenwood J.R., Halgren T.A., Sanschagrin P.C., Mainz D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein–Ligand Complexes. J. Med. Chem. 2006;49:6177–6196. doi: 10.1021/jm051256o. PubMed DOI
Genheden S., Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015;10:449–461. doi: 10.1517/17460441.2015.1032936. PubMed DOI PMC
Curik N., Polivkova V., Burda P., Koblihova J., Laznicka A., Kalina T., Kanderova V., Brezinova J., Ransdorfova S., Karasova D., et al. Somatic Mutations in Oncogenes Are in Chronic Myeloid Leukemia Acquired De Novo via Deregulated Base-Excision Repair and Alternative Non-Homologous End Joining. Front Oncol. 2021;11:744373. doi: 10.3389/fonc.2021.744373. PubMed DOI PMC
Calderon-Arancibia J., Espinosa-Bustos C., Canete-Molina A., Tapia R.A., Faundez M., Torres M.J., Aguirre A., Paulino M., Salas C.O. Synthesis and pharmacophore modelling of 2,6,9-trisubstituted purine derivatives and their potential role as apoptosis-inducing agents in cancer cell lines. Molecules. 2015;20:6808–6826. doi: 10.3390/molecules20046808. PubMed DOI PMC
Meng Y., Gao C., Clawson D.K., Atwell S., Russell M., Vieth M., Roux B. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models. J. Chem. Theory Comput. 2018;14:2721–2732. doi: 10.1021/acs.jctc.7b01170. PubMed DOI PMC
Weisberg E., Manley P., Mestan J., Cowan-Jacob S., Ray A., Griffin J.D. AMN107 (nilotinib): A novel and selective inhibitor of BCR-ABL. Br. J. Cancer. 2006;94:1765–1769. doi: 10.1038/sj.bjc.6603170. PubMed DOI PMC
Willis S.G., Lange T., Demehri S., Otto S., Crossman L., Niederwieser D., Stoffregen E.P., McWeeney S., Kovacs I., Park B., et al. High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: Correlation with clonal cytogenetic evolution but not response to therapy. Blood. 2005;106:2128–2137. doi: 10.1182/blood-2005-03-1036. PubMed DOI
Pemovska T., Johnson E., Kontro M., Repasky G.A., Chen J., Wells P., Cronin C.N., McTigue M., Kallioniemi O., Porkka K., et al. Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation. Nature. 2015;519:102–105. doi: 10.1038/nature14119. PubMed DOI
Meanwell N.A. Improving Drug Candidates by Design: A Focus on Physicochemical Properties As a Means of Improving Compound Disposition and Safety. Chem. Res. Toxicol. 2011;24:1420–1456. doi: 10.1021/tx200211v. PubMed DOI
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169-409X(96)00423-1. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. The article was originally published in Adv. Drug Deliv. Rev. 1997, 23, 3–25.1. PubMed DOI
Veber D.F., Johnson S.R., Cheng H.-Y., Smith B.R., Ward K.W., Kopple K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI