Design, Synthesis, In Silico Studies and Inhibitory Activity towards Bcr-Abl, BTK and FLT3-ITD of New 2,6,9-Trisubstituted Purine Derivatives as Potential Agents for the Treatment of Leukaemia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-06553S
Czech Science Foundation
IGA_PrF_2022_007
Palacký University, Olomouc
ENOCH, No. CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
Nº21180975.
Conicyt, Chile
PubMed
35745866
PubMed Central
PMC9228270
DOI
10.3390/pharmaceutics14061294
PII: pharmaceutics14061294
Knihovny.cz E-zdroje
- Klíčová slova
- 3D-QSAR, leukaemia, molecular docking, purine derivatives, tyrosine kinases inhibitors,
- Publikační typ
- časopisecké články MeSH
We report 31 new compounds designed, synthesized and evaluated on Bcr-Abl, BTK and FLT3-ITD as part of our program to develop 2,6,9-trisubstituted purine derivatives as inhibitors of oncogenic kinases. The design was inspired by the chemical structures of well-known kinase inhibitors and our previously developed purine derivatives. The synthesis of these purines was simple and used a microwave reactor for the final step. Kinase assays showed three inhibitors with high selectivity for each protein that were identified: 4f (IC50 = 70 nM for Bcr-Abl), 5j (IC50 = 0.41 μM for BTK) and 5b (IC50 = 0.38 μM for FLT-ITD). The 3D-QSAR analysis and molecular docking studies suggested that two fragments are potent and selective inhibitors of these three kinases: a substitution at the 6-phenylamino ring and the length and volume of the alkyl group at N-9. The N-7 and the N-methyl-piperazine moiety linked to the aminophenyl ring at C-2 are also requirements for obtaining the activity. Furthermore, most of these purine derivatives were shown to have a significant inhibitory effect in vitro on the proliferation of leukaemia and lymphoma cells (HL60, MV4-11, CEM, K562 and Ramos) at low concentrations. Finally, we show that the selected purines (4i, 5b and 5j) inhibit the downstream signalling of the respective kinases in cell models. Thus, this study provides new evidence regarding how certain chemical modifications of purine ring substituents provide novel inhibitors of target kinases as potential anti-leukaemia drugs.
Zobrazit více v PubMed
Méndez-Ferrer S., Bonnet D., Steensma D.P., Hasserjian R.P., Ghobrial I.M., Gribben J.G., Andreeff M., Krause D.S. Bone marrow niches in haematological malignancies. Nat. Rev. Cancer. 2020;20:285–298. doi: 10.1038/s41568-020-0245-2. PubMed DOI PMC
Taylor J., Xiao W., Abdel-Wahab O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood. 2017;130:410–423. doi: 10.1182/blood-2017-02-734541. PubMed DOI PMC
Godley L.A., Shimamura A. Genetic predisposition to hematologic malignancies: Management and surveillance. Blood. 2017;130:424–432. doi: 10.1182/blood-2017-02-735290. PubMed DOI PMC
Zeidner J.F., Karp J.E., Blackford A.L., Foster M.C., Dees E.C., Smith G., Ivy S.P., Harris P. Phase I Clinical Trials in Acute Myeloid Leukemia: 23-Year Experience From Cancer Therapy Evaluation Program of the National Cancer Institute. J. Nat. Cancer Inst. 2016;108:djv335. doi: 10.1093/jnci/djv335. PubMed DOI PMC
Rossari F., Minutolo F., Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: From chemical development to clinical efficacy. J. Hematol. Oncol. 2018;11:84. doi: 10.1186/s13045-018-0624-2. PubMed DOI PMC
Kannaiyan R., Mahadevan D. A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev. Anticancer. 2018;18:1249–1270. doi: 10.1080/14737140.2018.1527688. PubMed DOI PMC
Liang C., Tian D., Ren X., Ding S., Jia M., Xin M., Thareja S. The development of Bruton’s tyrosine kinase (BTK) inhibitors from 2012 to 2017: A mini-review. Eur. J. Med. Chem. 2018;151:315–326. doi: 10.1016/j.ejmech.2018.03.062. PubMed DOI
Kanfar S.S., Chan S.M., Gupta V., Schimmer A.D., Schuh A.C., Sibai H., Yee K.W.L., Minden M.D. Outcomes of Adult Philadelphia Positive Acute Lymphoblastic Leukemia Patients Treated with Pediatric Multi-Agent Chemotherapy and Imatinib and the Impact of Residual Disease Monitoring on Survival. Blood. 2016;128:3976. doi: 10.1182/blood.V128.22.3976.3976. DOI
Quintas-Cardama A., Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. 2009;113:1619–1630. doi: 10.1182/blood-2008-03-144790. PubMed DOI PMC
Nicolini F.E., Mauro M.J., Martinelli G., Kim D.W., Soverini S., Muller M.C., Hochhaus A., Cortes J., Chuah C., Dufva I.H., et al. Epidemiologic study on survival of chronic myeloid leukemia and Ph(+) acute lymphoblastic leukemia patients with BCR-ABL T315I mutation. Blood. 2009;114:5271–5278. doi: 10.1182/blood-2009-04-219410. PubMed DOI PMC
Quintas-Cardama A., Kantarjian H., Cortes J. Flying under the radar: The new wave of BCR-ABL inhibitors. Nat. Rev. Drug Discov. 2007;6:834–848. doi: 10.1038/nrd2324. PubMed DOI
Azevedo A.P., Reichert A., Afonso C., Alberca M.D., Tavares P., Lima F. BCR-ABL V280G Mutation, Potential Role in Imatinib Resistance: First Case Report. Clin. Med. Insights Oncol. 2017;11:1179554917702870. doi: 10.1177/1179554917702870. PubMed DOI PMC
Weisberg E., Manley P.W., Cowan-Jacob S.W., Hochhaus A., Griffin J.D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer. 2007;7:345–356. doi: 10.1038/nrc2126. PubMed DOI
Nicolini F.E., Ibrahim A.R., Soverini S., Martinelli G., Muller M.C., Hochhaus A., Dufva I.H., Kim D.W., Cortes J., Mauro M.J., et al. The BCR-ABLT315I mutation compromises survival in chronic phase chronic myelogenous leukemia patients resistant to tyrosine kinase inhibitors, in a matched pair analysis. Haematologica. 2013;98:1510–1516. doi: 10.3324/haematol.2012.080234. PubMed DOI PMC
O’Hare T., Walters D.K., Stoffregen E.P., Jia T., Manley P.W., Mestan J., Cowan-Jacob S.W., Lee F.Y., Heinrich M.C., Deininger M.W., et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005;65:4500–4505. doi: 10.1158/0008-5472.CAN-05-0259. PubMed DOI
Mohamed A.J., Yu L., Backesjo C.M., Vargas L., Faryal R., Aints A., Christensson B., Berglof A., Vihinen M., Nore B.F., et al. Bruton’s tyrosine kinase (Btk): Function, regulation, and transformation with special emphasis on the PH domain. Immunol. Rev. 2009;228:58–73. doi: 10.1111/j.1600-065X.2008.00741.x. PubMed DOI
Pal Singh S., Dammeijer F., Hendriks R.W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer. 2018;17:57. doi: 10.1186/s12943-018-0779-z. PubMed DOI PMC
Suri D., Rawat A., Singh S. X-linked Agammaglobulinemia. Indian J. Pediatr. 2016;83:331–337. doi: 10.1007/s12098-015-2024-8. PubMed DOI
Thomas J.D., Sideras P., Smith C.I., Vorechovsky I., Chapman V., Paul W.E. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science. 1993;261:355–358. doi: 10.1126/science.8332900. PubMed DOI
Vetrie D., Vorechovsky I., Sideras P., Holland J., Davies A., Flinter F., Hammarstrom L., Kinnon C., Levinsky R., Bobrow M., et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361:226–233. doi: 10.1038/361226a0. PubMed DOI
Campbell R., Chong G., Hawkes E.A. Novel Indications for Bruton’s Tyrosine Kinase Inhibitors, beyond Hematological Malignancies. J. Clin. Med. 2018;7:62. doi: 10.3390/jcm7040062. PubMed DOI PMC
Hallek M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 2019;94:1266–1287. doi: 10.1002/ajh.25595. PubMed DOI
Byrd J.C., Harrington B., O’Brien S., Jones J.A., Schuh A., Devereux S., Chaves J., Wierda W.G., Awan F.T., Brown J.R., et al. Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2016;374:323–332. doi: 10.1056/NEJMoa1509981. PubMed DOI PMC
Woyach J.A., Furman R.R., Liu T.-M., Ozer H.G., Zapatka M., Ruppert A.S., Xue L., Li D.H.-H., Steggerda S.M., Versele M., et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 2014;370:2286–2294. doi: 10.1056/NEJMoa1400029. PubMed DOI PMC
Liu L., Shi B., Wang X., Xiang H. Strategies to overcome resistance mutations of Bruton’s tyrosine kinase inhibitor ibrutinib. Fut. Med. Chem. 2018;10:343–356. doi: 10.4155/fmc-2017-0145. PubMed DOI
Schiffer C.A. Hematopoietic growth factors and the future of therapeutic research on acute myeloid leukemia. N. Engl. J. Med. 2003;349:727–729. doi: 10.1056/NEJMp030076. PubMed DOI
Gilliland D.G., Griffin J.D. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532–1542. doi: 10.1182/blood-2002-02-0492. PubMed DOI
Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: Biology and therapeutic implications. J. Hematol. Oncol. 2011;4:13. doi: 10.1186/1756-8722-4-13. PubMed DOI PMC
Weisberg E., Boulton C., Kelly L.M., Manley P., Fabbro D., Meyer T., Gilliland D.G., Griffin J.D. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell. 2002;1:433–443. doi: 10.1016/S1535-6108(02)00069-7. PubMed DOI
Wu M., Li C., Zhu X. FLT3 inhibitors in acute myeloid leukemia. J. Hematol. Oncol. 2018;11:133. doi: 10.1186/s13045-018-0675-4. PubMed DOI PMC
Kiyoi H., Kawashima N., Ishikawa Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020;111:312–322. doi: 10.1111/cas.14274. PubMed DOI PMC
Tollkuci E., Tran T., Myers R. Gilteritinib administration in a hemodialysis patient. J. Oncol. Pharm. Pr. 2020;27:1078155220973259. doi: 10.1177/1078155220973259. PubMed DOI
Yamaura T., Nakatani T., Uda K., Ogura H., Shin W., Kurokawa N., Saito K., Fujikawa N., Date T., Takasaki M., et al. A novel irreversible FLT3 inhibitor, FF-10101, shows excellent efficacy against AML cells with FLT3 mutations. Blood. 2018;131:426–438. doi: 10.1182/blood-2017-05-786657. PubMed DOI
Larrosa-Garcia M., Baer M.R. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions. Mol. Cancer. 2017;16:991–1001. doi: 10.1158/1535-7163.MCT-16-0876. PubMed DOI PMC
Musumeci F., Schenone S., Grossi G., Brullo C., Sanna M. Analogs, formulations and derivatives of imatinib: A patent review. Expert Opin. Ther. Pat. 2015;25:1411–1421. doi: 10.1517/13543776.2015.1089233. PubMed DOI
Sharma S., Singh J., Ojha R., Singh H., Kaur M., Bedi P.M.S., Nepali K. Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors. Eur. J. Med. Chem. 2016;112:298–346. doi: 10.1016/j.ejmech.2016.02.018. PubMed DOI
Laufer S.A., Domeyer D.M., Scior T.R., Albrecht W., Hauser D.R. Synthesis and biological testing of purine derivatives as potential ATP-competitive kinase inhibitors. J. Med. Chem. 2005;48:710–722. doi: 10.1021/jm0408767. PubMed DOI
Legraverend M., Grierson D.S. The purines: Potent and versatile small molecule inhibitors and modulators of key biological targets. Bioorg. Med. Chem. 2006;14:3987–4006. doi: 10.1016/j.bmc.2005.12.060. PubMed DOI
Welsch M.E., Snyder S.A., Stockwell B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 2010;14:347–361. doi: 10.1016/j.cbpa.2010.02.018. PubMed DOI PMC
Azam M., Nardi V., Shakespeare W.C., Metcalf C.A., 3rd, Bohacek R.S., Wang Y., Sundaramoorthi R., Sliz P., Veach D.R., Bornmann W.G., et al. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Proc. Natl. Acad. Sci. USA. 2006;103:9244–9249. doi: 10.1073/pnas.0600001103. PubMed DOI PMC
Shi Q., Tebben A., Dyckman A.J., Li H., Liu C., Lin J., Spergel S., Burke J.R., McIntyre K.W., Olini G.C., et al. Purine derivatives as potent Bruton’s tyrosine kinase (BTK) inhibitors for autoimmune diseases. Bioorg. Med. Chem. Lett. 2014;24:2206–2211. doi: 10.1016/j.bmcl.2014.02.075. PubMed DOI
Gucky T., Reznickova E., Radosova Muchova T., Jorda R., Klejova Z., Malinkova V., Berka K., Bazgier V., Ajani H., Lepsik M., et al. Discovery of N(2)-(4-Amino-cyclohexyl)-9-cyclopentyl- N(6)-(4-morpholin-4-ylmethyl-phenyl)- 9H-purine-2,6-diamine as a Potent FLT3 Kinase Inhibitor for Acute Myeloid Leukemia with FLT3 Mutations. J. Med. Chem. 2018;61:3855–3869. doi: 10.1021/acs.jmedchem.7b01529. PubMed DOI
Wang Y., Shakespeare W.C., Huang W.S., Sundaramoorthi R., Lentini S., Das S., Liu S., Banda G., Wen D., Zhu X., et al. Novel N9-arenethenyl purines as potent dual Src/Abl tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett. 2008;18:4907–4912. doi: 10.1016/j.bmcl.2008.06.042. PubMed DOI
Bertrand J., Dostalova H., Krystof V., Jorda R., Castro A., Mella J., Espinosa-Bustos C., Maria Zarate A., Salas C.O. New 2,6,9-trisubstituted purine derivatives as Bcr-Abl and Btk inhibitors and as promising agents against leukemia. Bioorg. Chem. 2020;94:103361. doi: 10.1016/j.bioorg.2019.103361. PubMed DOI
Salas C.O., Zarate A.M., Kryštof V., Mella J., Faundez M., Brea J., Loza M.I., Brito I., Hendrychová D., Jorda R., et al. Promising 2,6,9-Trisubstituted Purine Derivatives for Anticancer Compounds: Synthesis, 3D-QSAR, and Preliminary Biological Assays. Int. J. Mol. Sci. 2020;21:161. doi: 10.3390/ijms21010161. PubMed DOI PMC
Calderon-Arancibia J., Espinosa-Bustos C., Canete-Molina A., Tapia R.A., Faundez M., Torres M.J., Aguirre A., Paulino M., Salas C.O. Synthesis and Pharmacophore Modelling of 2,6,9-Trisubstituted Purine Derivatives and Their Potential Role as Apoptosis-Inducing Agents in Cancer Cell Lines. Molecules. 2015;20:6808–6826. doi: 10.3390/molecules20046808. PubMed DOI PMC
Zárate A.M., Espinosa-Bustos C., Guerrero S., Fierro A., Oyarzún-Ampuero F., Quest A.F.G., Di Marcotullio L., Loricchio E., Caimano M., Calcaterra A., et al. A New Smoothened Antagonist Bearing the Purine Scaffold Shows Antitumour Activity In Vitro and In Vivo. Int. J. Mol. Sci. 2021;22:8372. doi: 10.3390/ijms22168372. PubMed DOI PMC
Brasca M.G., Amboldi N., Ballinari D., Cameron A., Casale E., Cervi G., Colombo M., Colotta F., Croci V., D’Alessio R., et al. Identification of N,1,4,4-Tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo [4,3-h]quinazoline-3-carboxamide (PHA-848125), a Potent, Orally Available Cyclin Dependent Kinase Inhibitor. J. Med. Chem. 2009;52:5152–5163. doi: 10.1021/jm9006559. PubMed DOI
Byers L.A., Diao L., Wang J., Saintigny P., Girard L., Peyton M., Shen L., Fan Y., Giri U., Tumula P.K., et al. An Epithelial–Mesenchymal Transition Gene Signature Predicts Resistance to EGFR and PI3K Inhibitors and Identifies Axl as a Therapeutic Target for Overcoming EGFR Inhibitor Resistance. Clin. Cancer Res. 2013;19:279. doi: 10.1158/1078-0432.CCR-12-1558. PubMed DOI PMC
Clark M., Cramer III R.D., Van Opdenbosch N. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 1989;10:982–1012. doi: 10.1002/jcc.540100804. DOI
Golbraikh A., Tropsha A. Beware of q2! J. Mol. Graph. Model. 2002;20:269–276. doi: 10.1016/S1093-3263(01)00123-1. PubMed DOI
Tropsha A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Infor. 2010;29:476–488. doi: 10.1002/minf.201000061. PubMed DOI
Schrödinger Release 2021-1. Schrödinger, LLC; New York, NY, USA: 2021.
Tokarski J.S., Newitt J.A., Chang C.Y., Cheng J.D., Wittekind M., Kiefer S.E., Kish K., Lee F.Y., Borzillerri R., Lombardo L.J., et al. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 2006;66:5790–5797. doi: 10.1158/0008-5472.CAN-05-4187. PubMed DOI
Lou Y., Han X., Kuglstatter A., Kondru R.K., Sweeney Z.K., Soth M., McIntosh J., Litman R., Suh J., Kocer B., et al. Structure-based drug design of RN486, a potent and selective Bruton’s tyrosine kinase (BTK) inhibitor, for the treatment of rheumatoid arthritis. J. Med. Chem. 2015;58:512–516. doi: 10.1021/jm500305p. PubMed DOI
Kawase T., Nakazawa T., Eguchi T., Tsuzuki H., Ueno Y., Amano Y., Suzuki T., Mori M., Yoshida T. Effect of Fms-like tyrosine kinase 3 (FLT3) ligand (FL) on antitumor activity of gilteritinib, a FLT3 inhibitor, in mice xenografted with FL-overexpressing cells. Oncotarget. 2019;10:6111–6123. doi: 10.18632/oncotarget.27222. PubMed DOI PMC
Jacobson M.P., Friesner R.A., Xiang Z., Honig B. On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol. 2002;320:597–608. doi: 10.1016/S0022-2836(02)00470-9. PubMed DOI
Jacobson M.P., Pincus D.L., Rapp C.S., Day T.J., Honig B., Shaw D.E., Friesner R.A. A hierarchical approach to all-atom protein loop prediction. Proteins. 2004;55:351–367. doi: 10.1002/prot.10613. PubMed DOI
Friesner R.A., Banks J.L., Murphy R.B., Halgren T.A., Klicic J.J., Mainz D.T., Repasky M.P., Knoll E.H., Shelley M., Perry J.K., et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. PubMed DOI
Friesner R.A., Murphy R.B., Repasky M.P., Frye L.L., Greenwood J.R., Halgren T.A., Sanschagrin P.C., Mainz D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006;49:6177–6196. doi: 10.1021/jm051256o. PubMed DOI
Lozzio C., Lozzio B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975;45:321–334. doi: 10.1182/blood.V45.3.321.321. PubMed DOI
Quentmeier H., Reinhardt J., Zaborski M., Drexler H.G. FLT3 mutations in acute myeloid leukemia cell lines. Leukemia. 2003;17:120–124. doi: 10.1038/sj.leu.2402740. PubMed DOI
Guo B., Kato R.M., Garcia-Lloret M., Wahl M.I., Rawlings D.J. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity. 2000;13:243–253. doi: 10.1016/S1074-7613(00)00024-8. PubMed DOI
Baśkiewicz-Masiuk M., Machaliński B. The role of the STAT5 proteins in the proliferation and apoptosis of the CML and AML cells. Eur. J. Haematol. 2004;72:420–429. doi: 10.1111/j.1600-0609.2004.00242.x. PubMed DOI
Gobeil S., Boucher C.C., Nadeau D., Poirier G.G. Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): Implication of lysosomal proteases. Cell Death Differ. 2001;8:588–594. doi: 10.1038/sj.cdd.4400851. PubMed DOI